
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Collections

Our next major topic involves common mechanisms for naming collections of items.

Motivation for Collections
Sometimes we have a lot of very similar data, and we would liketo do similar things to each datum.

For example, suppose we wanted to extend our “PurchaseTracker” example to remember all of the
PurchsedItem objects we create, to be printed out at the end.

We would need names for all of those objects. Since we don’t know how many there would be, we
don’t know how many names to declare.

Java and other programming languages provide a number of mechanisms to help here. We will
consider two in Java. First, we will look at a Java class called theArrayList, and later a lower-
level construct common to most modern programming languagecalledarrays. Each allows us to
use one name for an entire collection of objects.

The JavaArrayList Class
As you continue to expand your programming skills, you will learn about a variety of ways that
collections of data can be stored that vary in complexity, flexibility, and efficiency. We will consider
just one of those structures to start: theArrayList.

ArrayList is a class that implements anabstract data type provided by the standard Java utility
library.

Let’s see how to use them through an example: we will enhance the “PurchaseTracker” example
with anArrayList that holds all of thePurchasedItem objects we create.

See Example: PurchaseTrackerAll

We consider each change that was made to the program to see thebasic usage of anArrayList.

• First, we need to add animport statement to the top of our program.

import java.util.ArrayList;

This allows us to use the class nameArrayList in the rest of the file and Java will know
we mean to use the one in thejava.util package.

CSC 523 Advanced Programming Summer 2014

• Next, we declare a local variable inmain for ourArrayList and construct an instance:

ArrayList<PurchasedItem> items = new ArrayList<PurchasedItem>();

Since anArrayList is a generic structure that can be used to hold objects of any type, we
need to tell Java what type of objects will be stored in this particularArrayList. In this
case, it’sPurchasedItems. So we specify this as a type parameter both in the variable
declaration and the construction.

• The PurchasedItem instances are then created, and we need to insert each into the
ArrayList. This is done with theadd method:

items.add(item);

This will take thePurchasedItem nameditem and add it to the first available slot in the
ArrayList nameditems.

Note that in this case, we are not requesting any specific location within theArrayList
for the item. We will later see that we can be more specific here.

Note also that we as users of theArrayList do not know (though when you take data
structures, you’ll have a pretty good idea) of what’s going on inside theArrayList to add
the item. We just know that it knows how to do it.

When we’re done with thedo..while loop, theArrayList contains references to all of
thePurchasedItem objects we constructed.

• In the rest of themain method, we need to access thePurchasedItem objects within the
ArrayList. We do this with theget method:

item = items.get(0);

in the middle of the method gives us a reference to the firstPurchasedItem that we had
added to theArrayList.

We then see afor loop that usesitemNum is a loop index variable that will range from 1
to one less than the number of items in theArrayList. How many items are there? We
can get that information from theArrayList itself using thesize method.

What we see here is that theArrayList has assigned a number, often called anindex, to
eachPurchasedItem we added to theArrayList, and we can pass that number to the
get method to get back a specificPurchasedItem from theArrayList.

This is our first example of asearch operation on a collection – we are looking through each
object in the collection to find ones that are the “winners” ineach category. More precisely,
this is alinear search and we will say more about this later.

2

CSC 523 Advanced Programming Summer 2014

One of the great things about using a construct like anArrayList is that we can extend our
programs to keep track of a much larger number of objects. No matter how many items we enter
into the program (within the bounds of our computer’s memoryresources, at least) we can use a
collection like anArrayList to keep track of them.

For a second example, consider the use of anArrayList of Association objects:

See Example: Spells

Again, we construct anArrayList andadd items to it. In this case,Associations which
useString objects for both key and value.

There is just oneArrayList method here that was not in the previous:indexOf. This one
searches through theArrayList for an object that is equivalent (by theequals method) to
the one passed as a parameter. It returns the index (positionwithin theArrayList) of the first
match. If no match exists, it returns -1.

Note here that we make use of the fact that for twoAssociations to be considered equal, their
keys must match, but their values do not.

Other ArrayList methods

The examples above demonstrated just a few of the capabilities of theArrayList class: con-
struction,add, get, andsize.

The full documentation for theArrayList can be found athttp://docs.oracle.com/
javase/7/docs/api/.

Here are a couple of additional methods, some of which will come up in later examples.

• remove – remove an object from the list

• clear – remove all objects from the list

• contains – determine if a given object is in the list

• set – replace the contents at an index with a new element

ArrayLists of Primitive Types

Java places a significant restriction on the use of primitivetypes as the type parameters for generic
data structures such as theArrayList. The following would not be valid Java:

ArrayList<int> a = new ArrayList<int>();

The type in the<> must be an object type. Fortunately, Java provides object types that correspond
to each primitive type. AnInteger object is able to store a singleint value, aDouble value
is able to store a singledouble value, etc. So the declaration and construction above wouldneed
to be:

3

CSC 523 Advanced Programming Summer 2014

ArrayList<Integer> a = new ArrayList<Integer>();

In older versions of Java, programmers would need to be careful to convert back and forth between
values of the primitive types and their object encapsulators. To construct anInteger from an
int i, one would need to do so explicitly:

a.add(new Integer(i));

And to retrieve theint value from anInteger, one would also do so explicitly:

a.get(pos).intValue();

However, recent versions of Java automatically convert between the primitive types and their ob-
ject encapsulating classes. This is calledautoboxing when converting from primitive to “boxed”
encapsulating classes, andautounboxing when going back the other way.

However, the effective programmer should always keep in mind that these conversions are occur-
ring, as there is a computational cost to each.

Another Example

Suppose we have anArrayList of Integer values, and someone (by a mechanism which is not
our concern) has asked us to write a method that will find the largest value in theArrayList.
The following method will achieve this (we assume at least one element in theArrayList):

private static int findMax(ArrayList<Integer> a) {

int max = a.get(0);
for (int i=1; i<a.size(); i++) {

int val = a.get(i);
if (val > max) max = val;

}
return max;

}

The “for-each” Loop

We have seen that a common task with a collection such as anArrayList is to iterate over its
contents. That is, “visit” every element in the list exactlyonce to do something to it.

It is often the case (and was in many of the examples here) thatthe specific index of an entry in an
ArrayList is not important as we are iterating over its contents.

In these cases, the countingfor loops can be replaced with a related Java construct often called
thefor-each loop.

4

CSC 523 Advanced Programming Summer 2014

If we have anArrayList of objects of some typeT and we wish to loop over all entries in the
loop, we can replace a counting loop:

ArrayList<T> a = new ArrayList<T>();

...

for (int i = 0; i < a.size(); i++) {
T item = a.get(i);
// do something with item

}

with a for-each loop:

ArrayList<T> a = new ArrayList<T>();

...

for (T item : a) {
// do something with item

}

This construct will loop enough times so that the variableitem will be assigned to each entry in
a exactly once through the body of the loop.

The for-each construct is not always appropriate, however.For example, in thefindMax method
above, it is more convenient to be able to get the item at position 0 as the initial “max” and then
loop over the entries from positions 1 and up to check for larger values.

As you learn more Java, you will see a number of other data structures that can be used with the
for-each loop construct.

An ArrayList Within a Custom Class

It may or may not have become clear so far that you can useArrayLists in pretty much any
context that you can use other data types. This includes as aninstance variable in a custom class.

See Example: CourseGrades

In the above example, which you will expand as part of your next lab,ArrayLists are used to
keep track of a list of students and course grades, and withinthe class that represents one student’s
information, the list of the grades.

Java Arrays

5

CSC 523 Advanced Programming Summer 2014

TheArrayList is a Java class, provided as a standard utility with every Java environment. But
it is built on top of a more fundamental programming languageconstruct called anarray.

In mathematics, we can refer to large groups of numbers (for example) by attaching subscripts to
names. We can talk about numbersn1, n2,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which have typeThingAMaJig and we wish
to call the groupthings. Then we write the declaration ofthings as

ThingAMaJig[] things;

The only difference between this and the declaration of a single item of typeThingAMaJig is
the occurrence of “[]” after the type.

Like all other objects, a group of elements needs to be created:

things = new ThingAMaJig[25];

Again, notice the square brackets. The number in parentheses (25) indicates the number of slots to
create, each of which can hold one of the elements. We can now refer to individual elements using
subscripts. However, in programming languages we cannot easily set the subscripts in a smaller
font placed slightly lower than regular type. As a result we use the ubiquitous “[]” to indicate a
subscript. If, as above, we definethings to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscripts at0, and hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subscriptsgo from 0 to 24.

One warning: When we initialize an array as above, we only create slots for all of the elements,
we do not necessarily fill the slots with elements. Actually,the default values of the elements of
the array are the same as for instance variables of the same type. If ThingAMaJig is an object
type, then the initial values of all elements isnull, while if it is int, then the initial values will
all be0. Thus you will want to be careful to put the appropriate values in the array before using
them (especially before sending message to them! – that’s aNullPointerException waiting
to happen).

In many ways, and array works like anArrayList, but we will see several differences.

For example:

See Example: SpellsArray

Notice how this differs from theArrayList version.

• Our variable declaration looks a bit different.

6

CSC 523 Advanced Programming Summer 2014

• When we construct the array in themain method, we need to tell it how many elements the
array will hold (in this case, 10). With theArrayList, we construct a list and we can add
as many things to it as we want. The array can only ever hold thenumber of elements we
provided when we constructed it.

• When we add items to the array, we need to specify the index explicitly. There is no way to
say “just add it to the end” the way we do withArrayLists.

• When we access array elements, we use the bracket notation in much the same way we use
theget method of theArrayList.

• The array remembers how many entries it contains, and we can access this information with
the.length. This plays the role of thesize method of theArrayList.

Another example:

See Example: GradeRangeCounter

This one includes examples of arrays declared and initialized asfinal, and an example of an
array ofint allocated withnew.

Inserting and Removing with Arrays

There is quite a bit to keep track of when using arrays, especially when objects are being added.
We need to manage both the size of the array and the number of items it contains. If it fills, we
either need to make sure we do not attempt to add another element, or reconstruct the array with a
larger size.

As a wrapup of our initial discussion of arrays, let’s consider two more situations and how we need
to deal with them: adding a new item in the middle of an array, and removing an item from the
end.

For these examples, we will use arrays of numbers. Arrays canstore numbers just as well as they
can store references to objects.

Suppose we have an array ofint large enough to hold 20 numbers.

The array would be declared as an instance variable:

private int[] a;

along with another instance variable indicating the numberof ints currently stored ina:

private int count;

and constructed and initialized:

a = new int[20];
count = 0;

7

CSC 523 Advanced Programming Summer 2014

At some point in the program,count contains 10, meaning that elements 0 through 9 ofa contain
meaningful values.

Now, suppose we want to add a new item to the array. So far, we have done something like this:

a[count] = 17;
count++;

This will put a 17 into element 10, and increment thecount to 11.

But suppose that instead, we want to put the 17 into element 5, and without overwriting any of the
data currently in the array. Perhaps the array is maintaining the numbers in order from smallest to
largest.

In this case, we’d first need to “move up” all of the elements inpositions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and then incrementcount.

If the variableinsertAt contains the position at which we wish to add a new value, and that new
value is in the variableval:

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}
a[insertAt] = val;
count++;

Now, suppose we would like to remove a value in the middle. Instead of “moving up” values to
make space, we need to “move down” the values to fill in the holethat would be left by removing
the value.

If the variableremoveAt contains the index of the value to be removed:

for (int i=removeAt+1; i<count; i++) {
a[i-1] = a[i];

}
count--;

The loop is only necessary if we wish to maintain relative order among the remaining items in the
array. If that is not important (as is often the case with our graphical objects), we might simply
write:

a[removeAt] = a[count-1];
count--;

In circumstances where we are likely to insert or remove intothe middle of an array during its life-
time, it usually makes sense to take advantage of the higher-level functionality of theArrayList.

8

CSC 523 Advanced Programming Summer 2014

Array and ArrayList Summary
The following list summarizes the key differences and similarities between arrays andArrayLists.

Declaration To declare an array of elements of some typeT:

T[] ar;

whereT can be any type, including primitive types or Object types.

And to declare anArrayList that can hold items of typeT:

ArrayList<T> al;

whereT must be an object type. If we want to store a primitive type, wemust use Java’s
corresponding object wrappers (e.g.,Integer when we want to store items of typeint).

Construction To construct (allocate space for) our array ofn elements of typeT:

ar = new T[n];

Once constructed, the array will always have space forn elements of typeT – if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for the datatype stored in each entry. For
object types, all entries begin asnull. For primitive number types, they begin as 0. For
boolean arrays, they begin asfalse.

To construct anArrayList:

al = new ArrayList<T>();

This ArrayList initially does not contain any values. Its size will be determined by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the position at which we
wish to add the new element:

ar[i] = t;

This will place the itemt at positioni into our array.i must be in the range 0 ton-1 if we
constructed our array to haven entries. If there was already some data stored in positioni,
it will be overwritten witht.

If we want to add the item to the “end” of the array, that is, thefirst unoccupied slot in the
array, we will need an additional variable to keep track of the number of currently-occupied
slots. If this is calledaSize, and we have been careful to make sure theaSize elements
in the array occupy slots 0 throughaSize-1, we can add the element with:

9

CSC 523 Advanced Programming Summer 2014

ar[aSize] = t;
aSize++;

With anArrayList, theadd method takes care of this:

al.add(t);

Retrieving an Element To get an item from an array, we use the same notation. To put the value
from positioni in the array into some variablet:

t = ar[i];

Whereas with theArrayList, we need to call a method:

t = al.get(i);

Visiting All Elements To loop over all elements in the array:

for (int i=0; i<aSize; i++) {
t = ar[i];
// do something with t

}

and anArrayList;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
// do something with t

}

In both cases, we can also use the for-each loop.

Two-Dimensional Arrays
We can create arrays to hold objects of any type, either basicdata types likeint anddouble, or
instances of objects.

Nothing stops us from defining arrays of arrays. To declare anarray, each of whose elements is an
array ofint:

int[][] twoDArray;

10

CSC 523 Advanced Programming Summer 2014

While it is normally written without parentheses, we can think of the above declaration as defining
twoDArray as having type(int []) []. Thus each element oftwoDArray is an array of
ints.

Despite the fact that Java will treat this as an array of arrays, we usually think about this as a two-
dimensional array, with the elements arranged in a two-dimensional table so thattwoDArray[i][j]
can be seen as the element in theith row andjth column. For example here is the layout for a two-
dimensional arraya with 6 rows (numbered 0 to 5) and 4 columns:

0 1 2 3

0 a[0][0] a[0][1] a[0][2] a[0][3]
1 a[1][0] a[1][1] a[1][2] a[1][3]
2 a[2][0] a[2][1] a[2][2] a[2][3]
3 a[3][0] a[3][1] a[3][2] a[3][3]
4 a[4][0] a[4][1] a[4][2] a[4][3]
5 a[5][0] a[5][1] a[5][2] a[5][3]

Viewed in this way, our two-dimensional array is a grid, muchlike a map or a spreadsheet. This is
a natural way to store things like tables of data or matrices.

We access elements of two-dimensional arrays in a manner similar to that used for one dimensional
arrays, except that we must provide both the row and column toaccess an element, giving the row
number first.

We create a two-dimensional array by providing the number ofrows and columns. Thus we can
create the two-dimensional array above by writing:

int[][] a = new int[6][4];

(Though as good programmers, you would define constants for the number of rows and the number
of columns.)

A nestedfor loop is the most common way to access or update the elements ofa two-dimensional
array. One loop walks through the rows and the other walks through the columns. For example, if
we wanted to assign a unique number to each cell of our two-dimensional array, we could do the
following:

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

a[row][col] = 4*row + col + 1;
}

}

This assigns the numbers 1 through 24 to the elements of arraya. The array is filled by assigning
values to the elements in the first row, then the second row, etc. and results in:

11

CSC 523 Advanced Programming Summer 2014

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

And if we wanted to print the above, we can write a loop:

for (int row = 0; row < 6; row++) {
for (int col = 0; col < 4; col++) {

System.out.print(a[row][col] + " ");
}
System.out.println();

}

You could modify the above to be slightly more interesting bycomputing a multiplication table.

We could just as well process all the elements of column 0 first, then all of column 1, etc., by
swapping the order of our loops:

for (int col = 0; col < 4; col++)
for (int row = 0; row < 6; row++)

...

For the most part, it doesn’t matter which order you choose, though for large arrays it is generally
a good idea to traverse the array in the same order that your programming language will store
the values in memory. For Java (and C, C++), the data is stored byrows, known asrow major
order. However, an two-dimensional array in FORTRAN is stored in column major order. You
will almost certainly see this again if you go on and take courses like Computer Organization or
Operating Systems.

Two-Dimensional Matrices

A very common use of two-dimensional arrays is the representation of matrices. We will look at
an example of a class that represents two-dimensional square matrices and provides some basic
operations on them.

See Example: Matrix2D

The class is capable of holding a square matrix ofdouble values of any positive dimension.

Comments within the example explain much of what is happening. Note in particular the use of the
two-dimensional array as an instance variable which storesthe matrix entries, the use of exceptions
to handle error conditions, and themain method that tests out the methods of the class. We will
be seeing much more about exception handling soon.

12

