Computer Science 523

Advanced Programming
The College of Saint Rose

Summer 2014

Topic Notes: Collections

Our next major topic involves common mechanisms for namaoilgctions of items.

Motivation for Collections
Sometimes we have a lot of very similar data, and we wouldblao similar things to each datum.

For example, suppose we wanted to extend our “Purchasesifastample to remember all of the
Pur chsedl t emobjects we create, to be printed out at the end.

We would need names for all of those objects. Since we dooidmow many there would be, we
don’t know how many names to declare.

Java and other programming languages provide a number dianetns to help here. We will
consider two in Java. First, we will look at a Java class daleAr r ayLi st , and later a lower-
level construct common to most modern programming langeatiedarrays. Each allows us to
use one name for an entire collection of objects.

The JavaArr ayLi st Class

As you continue to expand your programming skills, you wathin about a variety of ways that
collections of data can be stored that vary in complexity;jlbiéty, and efficiency. We will consider
just one of those structures to start: #er ayLi st .

Arrayli st is a class that implements abstract data type provided by the standard Java utility
library.

Let's see how to use them through an example: we will enhdmeéRurchaseTracker” example
with anAr r ayLi st that holds all of thdPur chasedl t emobjects we create.

See Example: PurchaseTrackerAll

We consider each change that was made to the program to dessibeisage of aAr r ayLi st .

e First, we need to add ampor t statement to the top of our program.
i mport java.util.ArraylList;

This allows us to use the class nader ayLi st in the rest of the file and Java will know
we mean to use the one in thava. uti | package.

CSC 523 Advanced Programming Summer 2014

e Next, we declare a local variable mai n for our Ar r ayLi st and construct an instance:
ArraylLi st <Purchasedltenr itens = new ArrayLi st <Purchasedlteny();

Since arAr r ayLi st is a generic structure that can be used to hold objects ofyaey e
need to tell Java what type of objects will be stored in thidipalar Ar r ayLi st . In this
case, it'sPur chasedl t ens. So we specify this as a type parameter both in the variable
declaration and the construction.

e The Pur chasedl t eminstances are then created, and we need to insert each &to th
ArraylLi st . This is done with thedd method:

itens. add(item;

This will take thePur chasedl t emnamed t emand add it to the first available slot in the
ArrayLi st named t ens.

Note that in this case, we are not requesting any specifigitotavithin the Ar r ayLi st
for the item. We will later see that we can be more specific.here

Note also that we as users of tAer ayLi st do not know (though when you take data
structures, you’ll have a pretty good idea) of what’s goingreside theAr r ayLi st to add
the item. We just know that it knows how to do it.

When we're done with thdo..whi | e loop, theAr r ayLi st contains references to all of
thePur chasedl t emobjects we constructed.

¢ Inthe rest of themai n method, we need to access & chasedl t emobjects within the
ArrayLi st . We do this with theget method:

item= itens. get(0);

in the middle of the method gives us a reference to theRustchasedl t emthat we had
added to thér r ayLi st .

We then see &or loop that uses t enNumis a loop index variable that will range from 1
to one less than the number of items in ther ayLi st . How many items are there? We
can get that information from th&r r ayLi st itself using thesi ze method.

What we see here is that the r ayLi st has assigned a number, often calledradex, to
eachPur chasedl t emwe added to thér r ayLi st , and we can pass that number to the
get method to get back a specifur chasedl t emfrom theAr r ayLi st .

This is our first example of search operation on a collection — we are looking through each
object in the collection to find ones that are the “winnerséath category. More precisely,
this is alinear search and we will say more about this later.

CSC 523 Advanced Programming Summer 2014

One of the great things about using a construct likeAanayLi st is that we can extend our
programs to keep track of a much larger number of objects. Bitbemhow many items we enter
into the program (within the bounds of our computer’s menragources, at least) we can use a
collection like anAr r ayLi st to keep track of them.

For a second example, consider the use cilanayLi st of Associ at i on objects:
See Example: Spells

Again, we construct alr r ayLi st andadd items to it. In this caseAssoci at i ons which
useSt ri ng objects for both key and value.

There is just onér r ayLi st method here that was not in the previousidexOf . This one
searches through thé&r r ayLi st for an object that is equivalent (by tregual s method) to
the one passed as a parameter. It returns the index (positiloim the Ar r ayLi st) of the first
match. If no match exists, it returns -1.

Note here that we make use of the fact that for &soci at i ons to be considered equal, their
keys must match, but their values do not.

Other Arr ayLi st methods

The examples above demonstrated just a few of the capebibfi theAr r ayLi st class: con-
struction,add, get , andsi ze.

The full documentation for thér r ayLi st can be found ahtt p: // docs. oracl e. com
j avase/ 7/ docs/ api / .

Here are a couple of additional methods, some of which witheap in later examples.

e r enpve —remove an object from the list
e cl ear —remove all objects from the list
e cont ai ns —determine if a given object is in the list

e set —replace the contents at an index with a new element

ArraylLi st s of Primitive Types

Java places a significant restriction on the use of primijipes as the type parameters for generic
data structures such as ther ayLi st . The following would not be valid Java:

ArraylList<int> a = new ArraylLi st<int>();

The type in the<> must be an object type. Fortunately, Java provides objeetstyhat correspond
to each primitive type. A nt eger object is able to store a singlent value, aboubl e value
is able to store a singl@oubl e value, etc. So the declaration and construction above wuesd
to be:

CSC 523 Advanced Programming Summer 2014

ArraylLi st<Integer> a = new Arrayli st<Ilnteger>();

In older versions of Java, programmers would need to bewdmetonvert back and forth between
values of the primitive types and their object encapsutatdio construct ahnt eger from an
i nt i,onewould need to do so explicitly:

a. add(new Integer(i));
And to retrieve the nt value from an nt eger , one would also do so explicitly:
a. get (pos).intVal ue();

However, recent versions of Java automatically conveséen the primitive types and their ob-
ject encapsulating classes. This is caketbboxing when converting from primitive to “boxed”
encapsulating classes, asgtounboxing when going back the other way.

However, the effective programmer should always keep irdrttiat these conversions are occur-
ring, as there is a computational cost to each.

Another Example

Suppose we have & r ayLi st of Integer values, and someone (by a mechanism which is not
our concern) has asked us to write a method that will find thgekt value in thédr r ayLi st .
The following method will achieve this (we assume at leagt element in thé\r r ayLi st):

private static int findMax(ArrayList<lnteger> a) {

int max = a.get(0);

for (int i=1; i<a.size(); i++) {
int val = a.get(i);
if (val > max) max = val;

}

return max;

}

The “for-each” Loop

We have seen that a common task with a collection such & aayLi st is to iterate over its
contents. That is, “visit” every element in the list exaailyce to do something to it.

It is often the case (and was in many of the examples herejitbapecific index of an entry in an
ArraylLi st is notimportant as we are iterating over its contents.

In these cases, the countihgr loops can be replaced with a related Java construct oftéedcal
thefor-each loop.

CSC 523 Advanced Programming Summer 2014

If we have anAr r ayLi st of objects of some typ& and we wish to loop over all entries in the
loop, we can replace a counting loop:

ArrayList<T> a = new Arraylist<T>();

for (int i =0; i <a.size(); i++) {
Titem= a.get(i);
/1l do sonething with item

}

with a for-each loop:

ArrayList<T> a = new ArraylLi st<T>();

for (Titem: a) {
/1 do sonething with item

}

This construct will loop enough times so that the variabl@mwill be assigned to each entry in
a exactly once through the body of the loop.

The for-each construct is not always appropriate, howdw@rexample, in théi ndiVax method
above, it is more convenient to be able to get the item atipasit as the initial “max” and then
loop over the entries from positions 1 and up to check fordaxglues.

As you learn more Java, you will see a number of other datatsires that can be used with the
for-each loop construct.

An ArraylLi st Within a Custom Class

It may or may not have become clear so far that you canAuseayLi st s in pretty much any
context that you can use other data types. This includes exstamce variable in a custom class.

See Example: CourseGrades

In the above example, which you will expand as part of yourt hex Ar r ayLi st s are used to
keep track of a list of students and course grades, and wvitiinlass that represents one student’s
information, the list of the grades.

Java Arrays

CSC 523 Advanced Programming Summer 2014

TheAr raylLi st is a Java class, provided as a standard utility with everg @avironment. But
it is built on top of a more fundamental programming languegestruct called aarray.

In mathematics, we can refer to large groups of numbers amele) by attaching subscripts to
names. We can talk about numbers n,,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which hapesTigi ngAMAJi g and we wish
to call the groug hi ngs. Then we write the declaration ohi ngs as

Thi ngAMVAJi g[] things;

The only difference between this and the declaration of glsiitem of typeThi ngAMaJi g is
the occurrence of[“] ” after the type.

Like all other objects, a group of elements needs to be ateate
t hi ngs = new Thi ngAMAJi g[25] ;

Again, notice the square brackets. The number in parergt{@sgindicates the number of slots to
create, each of which can hold one of the elements. We cane&fewto individual elements using
subscripts. However, in programming languages we canrsiliyeset the subscripts in a smaller
font placed slightly lower than regular type. As a result we the ubiquitous[“] ” to indicate a
subscript. If, as above, we defihéi ngs to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscriptsGatand hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subsgogtem 0 to 24.

One warning: When we initialize an array as above, we onlytersiats for all of the elements,
we do not necessarily fill the slots with elements. Actudhy default values of the elements of
the array are the same as for instance variables of the sgqrae lfyThi ngAMaJi g is an object
type, then the initial values of all elementsiigl | , while if it is i nt , then the initial values will
all be 0. Thus you will want to be careful to put the appropriate valirethe array before using
them (especially before sending message to them! — thBlid &Poi nt er Except i on waiting

to happen).

In many ways, and array works like &nr ayLi st , but we will see several differences.
For example:
See Example: SpellsArray

Notice how this differs from thér r ayLi st version.

e Our variable declaration looks a bit different.

6

CSC 523 Advanced Programming Summer 2014

e When we construct the array in th@i n method, we need to tell it how many elements the
array will hold (in this case, 10). With th&r r ayLi st , we construct a list and we can add
as many things to it as we want. The array can only ever holehtimeber of elements we
provided when we constructed it.

e When we add items to the array, we need to specify the indexcélpl There is no way to
say “just add it to the end” the way we do wiélnr ayLi st s.

e When we access array elements, we use the bracket notatiaucim tire same way we use
theget method of théArr ayLi st .

e The array remembers how many entries it contains, and weatassithis information with
the. | engt h. This plays the role of thei ze method of theAr r ayLi st .
Another example:
See Example: GradeRangeCounter

This one includes examples of arrays declared and iniédlasf i nal , and an example of an
array ofi nt allocated withnew.

Inserting and Removing with Arrays

There is quite a bit to keep track of when using arrays, eafigavhen objects are being added.
We need to manage both the size of the array and the numbeamad it contains. If it fills, we
either need to make sure we do not attempt to add another eleoneeconstruct the array with a
larger size.

As a wrapup of our initial discussion of arrays, let’s coesitivo more situations and how we need
to deal with them: adding a new item in the middle of an arrayg] Bemoving an item from the
end.

For these examples, we will use arrays of numbers. Arraystae numbers just as well as they
can store references to objects.

Suppose we have an arrayiait large enough to hold 20 numbers.

The array would be declared as an instance variable:
private int[] a;
along with another instance variable indicating the nunadf@émt s currently stored i@.:
private int count;
and constructed and initialized:

a = new int[20];
count = O;

CSC 523 Advanced Programming Summer 2014

At some point in the prograng,ount contains 10, meaning that elements 0 through® odntain
meaningful values.

Now, suppose we want to add a new item to the array. So far, wed@ne something like this:

a[count] = 17;
count ++;

This will put a 17 into element 10, and increment tteunt to 11.

But suppose that instead, we want to put the 17 into elememicbyéhout overwriting any of the
data currently in the array. Perhaps the array is maintgitiie numbers in order from smallest to
largest.

In this case, we’d first need to “move up” all of the elementpasitions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and therementcount .

If the variablei nser t At contains the position at which we wish to add a new value, bathtew
value is in the variableal :

for (int i=count; i>nsertAt; i--) {
a[i] = a[i-1]

}

a[insertAt] = val;

count ++;

Now, suppose we would like to remove a value in the middletekd of “moving up” values to
make space, we need to “move down” the values to fill in the ti@déewould be left by removing
the value.

If the variabler enbveAt contains the index of the value to be removed:

for (int i=renoveAt+1; i<count; i++) {
afi-1] = a[i];
}

count - -;

The loop is only necessary if we wish to maintain relativeeor@mong the remaining items in the
array. If that is not important (as is often the case with aapbical objects), we might simply
write:

a[renoveAt] = a[count-1];
count - -;

In circumstances where we are likely to insert or removetinéomiddle of an array during its life-
time, it usually makes sense to take advantage of the highelrfunctionality of theAr r ayLi st .

8

CSC 523 Advanced Programming Summer 2014

Array and ArrayLi st Summary

The following list summarizes the key differences and saniiles between arrays addr ayLi st s.

Declaration To declare an array of elements of some t¥pe
T[] ar;

whereT can be any type, including primitive types or Object types.
And to declare ai\r r ayLi st that can hold items of typé:

ArrayLi st<T> al;

whereT must be an object type. If we want to store a primitive type,nnest use Java’'s
corresponding object wrappers (elgat eger when we want to store items of typent).

Construction To construct (allocate space for) our arraynaélements of typd:
ar = new T[n];

Once constructed, the array will always have spacefelements of typd — if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for thatygte stored in each entry. For
object types, all entries begin asil | . For primitive number types, they begin as 0. For
bool ean arrays, they begin dsal se.

To construct ar r ayLi st :
al = new ArraylList<T>();

This Arr ayLi st initially does not contain any values. Its size will be detered by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the positiatigh we
wish to add the new element:

ar[i] =t;

This will place the itent at positioni into our array.i must be in the range 0 -1 if we
constructed our array to hawveentries. If there was already some data stored in positjon
it will be overwritten witht .

If we want to add the item to the “end” of the array, that is, fin&t unoccupied slot in the
array, we will need an additional variable to keep track eftimmber of currently-occupied
slots. If this is calledaSi ze, and we have been careful to make sureaBeze elements
in the array occupy slots 0 througisi ze-1, we can add the element with:

9

CSC 523 Advanced Programming Summer 2014
ar[aSi ze] =1t;
aSi ze++;
With anAr r ayLi st , theadd method takes care of this:
al . add(t);

Retrieving an Element To get an item from an array, we use the same notation. To putdlue
from positioni in the array into some variabte

t =ar[i];
Whereas with thé\sr r ayLi st , we need to call a method:
t = al.get(i);
Visiting All Elements To loop over all elements in the array:
for (int i=0; i<aSize; i++) {
t =ar[i];

/1 do sonmething with t
}

and anArraylLi st;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
/1l do sonething with t

}

In both cases, we can also use the for-each loop.

Two-Dimensional Arrays

We can create arrays to hold objects of any type, either lolasactypes like nt anddoubl e, or
instances of objects.

Nothing stops us from defining arrays of arrays. To declarareay, each of whose elements is an
array ofi nt :

int[][] twoDArray;

10

CSC 523 Advanced Programming Summer 2014

While it is normally written without parentheses, we can khifithe above declaration as defining
t woDAr ray as having typg€int []) []. Thus each element 6fwoDAr r ay is an array of
ints.

Despite the fact that Java will treat this as an array of @;rege usually think about this as a two-

dimensional array, with the elements arranged in a two-dgiomal table so thatwoDAr ray[1][]]

can be seen as the element in itierow andjth column. For example here is the layout for a two-
dimensional array with 6 rows (numbered 0 to 5) and 4 columns:

o [* [2 | 3 |
a[0][0] [a[0][1] [a[0][2] |a[O][3]
a[1][0] [a[1](1] [a[1][2] |a[1][3]
a[2][0] [a[2][1] [a[2][2] |a[2][3]
a[3][0] [a[3](1] [a[3][2] |a[3][3]
a[4][0] [a[4][1] [a[4][2] |a[4][3]
a[5][0] [a[5](1] [a[5][2] |a[5][3]

g W NP O

Viewed in this way, our two-dimensional array is a grid, mlika a map or a spreadsheet. This is
a natural way to store things like tables of data or matrices.

We access elements of two-dimensional arrays in a manngastmthat used for one dimensional
arrays, except that we must provide both the row and colunacdess an element, giving the row
number first.

We create a two-dimensional array by providing the numbepws and columns. Thus we can
create the two-dimensional array above by writing:

int[][] a = newint[6][4];

(Though as good programmers, you would define constantséorumber of rows and the number
of columns.)

A nested or loop is the most common way to access or update the elemeatsvotdimensional
array. One loop walks through the rows and the other wallksutyin the columns. For example, if
we wanted to assign a unique number to each cell of our tweional array, we could do the
following:

for (int row = 0; row < 6; rowt+) {
for (int col = 0; col < 4; col++) {
a[row][col] = 4xrow + col + 1,

}

This assigns the numbers 1 through 24 to the elements of arrége array is filled by assigning
values to the elements in the first row, then the second rewaed results in:

11

CSC 523 Advanced Programming Summer 2014

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

And if we wanted to print the above, we can write a loop:

for (int row = 0; row < 6; rowt+) {
for (int col = 0; col < 4; col ++) {
Systemout.print(afrow[col] + " ");
}
Systemout.println();

}

You could modify the above to be slightly more interestingchynputing a multiplication table.

We could just as well process all the elements of column 0, fingn all of column 1, etc., by
swapping the order of our loops:

for (int col = 0; col < 4; col ++)
for (int row = 0; row < 6; row++)

For the most part, it doesn’t matter which order you chodsaygh for large arrays it is generally
a good idea to traverse the array in the same order that yogrgnming language will store
the values in memory. For Java (and C, C++), the data is storedviny, known asgow major
order. However, an two-dimensional array in FORTRAN is siarecolumn major order. You
will almost certainly see this again if you go on and take searlike Computer Organization or
Operating Systems.

Two-Dimensional Matrices

A very common use of two-dimensional arrays is the repregiem of matrices. We will look at
an example of a class that represents two-dimensional eaunatrices and provides some basic
operations on them.

See Example: Matrix2D
The class is capable of holding a square matrid@fibl e values of any positive dimension.

Comments within the example explain much of what is happeriiage in particular the use of the
two-dimensional array as an instance variable which stbeematrix entries, the use of exceptions
to handle error conditions, and thai n method that tests out the methods of the class. We will
be seeing much more about exception handling soon.

12

