
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Java Overview/Review

There are many ways to write a program to solve a particular problem correctly. In addition to
correctness, we will think about these implmentation goalsfor our programs:

1. Efficiency

• use algorithms, data structures, and language constructs to mimimize the amount of
processing power and memory needed

2. Robustness

• produce correct output for all inputs - including erroneousinput

3. Adaptability

• a program can evolve over time with new requirements

4. Reusability

• develop general-purpose code that may be used in multiple situations

Programming Languages
We will be programming in Java.

There are many programming languages, and Java is just one example. Most programming lan-
guages all basically do the same thing, though some are much better than others at certain types of
tasks. We choose to study advanced programming in Java because it is a modern, object-oriented
language that runs on all modern computer systems. An appropriate choice of programming lan-
guage makes it easier to write high-quality software.

All computer languages are anabstractionto make it more convenient to get computers to do what
we want them to do. We could write in 0’s and 1’s, but a variety of languages have been developed
to facilitate the development of software.

Most langauages, including C and C++ have compilers that translate source code into a executable
program that runs on a particular machine. Java and some other modern languages are different. All
Java compilers translate to a particularvirtual machine, which, in turn, runs on specific computers.

This gives Java some advantages that we will discuss along the way. For now, we will look at
programming in Java as a general-purpose modern object-oriented programming language.

CSC 523 Advanced Programming Summer 2014

Java Basics
We begin with the obligitory first example:

See Example: Hello

Things to note in Hello.java:

• Everything in Java has to be in aclass. More about classes in a minute. In C, there are
no classes and in C++ there are classes, but you can write functions outside of any class in
addition to class methods.

• Some of you may have seen only Javaapplets– this is a Javaapplication. We will look at
both during this semester.

• Each class can havemethods. An application has a class that must have amain method with
the method signature:

public static void main(String[] args)

Exactly what is meant by all of these will become clear later,but basically this is where
execution will start when we run this program.

• To execute this program in BlueJ, we open the project, and click on the class or classes to
bring up the source code. Compile with the “Compile” button (obviously). To run, we go
back to the project window, right click on the class that contains themain method we want
to execute, and choose the entry from the dropdown to executethemain method.

A console window should pop up with your output. If your program was taking input, you
would use that same window.

• Comments:

// starts comments which go to end of line
/* multi-line comments

are done like this */

You most certainly have been strongly encouraged or, more likely, required to document
your program usingcommentsin your previous courses.

The comment above the header inHello.java is a special kind of comment, it starts
with /** indicating that it is aJavadoccomment. These comments are used to generate
documentation for Java programs automatically. We may lookat Javadoc more later.

2

CSC 523 Advanced Programming Summer 2014

• The text output is made by a call toSystem.out.println() which takes one argument
– a string to print to the terminal.

This plays the role of C’sprintf and C++’scout.

Note:System.out.print() does the same, but without the new line at the end.

We can extend this just a bit to see more about how to produce useful output.

See Example: Seuss

This is basicallyHelloWorld all over, but there are a few little items that are new.

• Notice that the sentence “We know how.” is printed on the sameline as “Well, we can do it.”.
That’s because we used a different printing method for the latter: System.out.print.
This one works the same asSystem.out.println except that the output is not advanced
to the next line at the end.

• The last statement includes someescape sequencesthat cause the output to be formatted a
bit differently than it would otherwise appear. Escape sequences begin with a\ character
and are followed by acontrol characterthat defines the behavior of the sequence. Here, we
have three:

1. \t inserts a “tab” character, effectively indenting our output in this case,

2. \n advances the output to a new line, and

3. \" prints the double quote character, which would otherwise beimpossible since a
regular" character would be interpreted as the end of the text we are trying to print.

One bit of terminology at this point: the methodsSystem.out.println andSystem.out.print
are part of theJava API(Application Programmer Interface). Any valid Java installation comes
equipped with an extensive collection of pre-written software that our programs can use.

Interactive Programs
To create nearly any interesting program, we need to be able to provide it with input. This will
allow the program to react differently when presented with different inputs.

See Example: HelloYou

First, to get information from the keyboard into our program, we again turn to the Java API. There
are several mechanisms available, a few of which we will see this semester. But we will start with
one called aScanner.

In order to use aScanner, we will need to tell Java that we intend to use it, by inserting the line:

import java.util.Scanner;

3

CSC 523 Advanced Programming Summer 2014

at the top of our program (before the class header). We will see later how to determine exactly
what to “import” in theseimport statementsto use various Java API functionality, but for now, just
know that this is what we need to do to use aScanner.

Then, in ourmain method, where we wish to access information from the keyboard, weconstruct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner(System.in);

This is the first example we’ve seen here of anobject construction. There’s actually quite a bit
going on in this line, and we’ll examine it more carefully in aminute. But for now, we’re creating
a Scanner that usesSystem.in (which is Java’s cryptic way of saying “what is typed at the
keyboard”), and giving it a name,input. input is a local variable, which is a fundamental
construct in nearly any programming language, and again onethat we will examine more carefully
in a moment.

Now that we have aScanner calledinput, we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities for what we mean by “chunk” but for now,
we just want the word that someone types in as their name. Java’s Scanner provides a method
that does just that, callednext.

We will also need a name for the word that was typed in, so we canprint it out later. This is all
accomplished with the line:

String name = input.next();

Before we carry on further, we need to consider the concept of variables a little more closely.

A variable is a named storage location in the computer’s memory. We use avariable when we
have determined that there is some piece of data that we have in one Java statement, and we need
to remember that information for use in later statements.

When we need a variable in our program, we mustdeclarethat variable to Java, which is just a
fancy way of saying that we are going to introduce a name to ourJava program and tell Java what
type, or kind, of data we intend to store there.

A variable declaration takes one of two forms:

type name;

or

type name = initialValue;

4

CSC 523 Advanced Programming Summer 2014

where “type” is thedata type(or “ kind of data”) we will store, and “name” is the identifierwe
intend to use to refer to that data. In the second form, we alsoinitialize the variable to have a
specific value.

You have certainly seen many data types that store a variety of kinds of information. For now, we
are using two of Java’s:

• Scanner – which is the keyboard input mechanism we wish to use

• String – a collection of text, like a word or sentence

We give ourScanner the nameinput and theString the namename.

When naming our variables, we need to keep in mind several considerations:

• The name must be a valid Javaidentifier. This means it must consist only of letters, numbers,
the dollar sign character, and the underscore character (though it can only start with a letter).

• The name should follow Java’snaming conventions. Recall that for variables, we use lower-
case letters, except when we have a name that is made up of multiple words, in which case
we capitalize all but the first word.

• The name should be meaningful. That is, it should give some indication of what the variable
is to be used for. The names here satisfy that requirement:input implies that this is where
we get our input, andname implies that this is the name of something.

Once we have a variable, we can make use of its value later in our program. We do that here when
we call thenext method of ourScanner namedinput and when we use theString named
name in theSystem.out.println statement at the end of our program.

One last new idea here is that we now have something more complex as the text to be printed
by System.out.println. It’s not just some text in double quotes, but some text in double
quotes, followed by a+, followed by the name of ourString variable.

This is an example ofstring concatenation. We have thestring literal (i.e., some text inside double
quotes) to which we “append” the text in the variablename.

Working With Numbers
You know that computers often do just that: they compute withnumbers. So next, we consider
some examples of programs that work with numbers to show or remind you how Java works with
numeric values.

Integer Values

We start simple. Let’s compute a rectangle’s area and perimeter.

5

CSC 523 Advanced Programming Summer 2014

See Example: Rectangle

There are a few things to note in this program.

First, we are working with numbers rather than words. This changes how we read the data from
the keyboard through ourScanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions of therectangle are integer values.

The Java type we will most often use to store an integer value is anint. We declare and initialize
int variables namedwidth andheight to store the rectangle’s dimensions.

int is one of Java’sprimitive data types. We will see several other examples. These are the only
types that are usually specified with an all-lowercase keyword.

We next need to use a different method ofScanner to force it to look for an integer and return it
in as a Javaint instead of aString. That method is callednextInt.

Once we have our width and height, we need to compute the area and perimeter from them. For
this, we need to declare two moreint variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you know that to compute the area of a rect-
angle, we multiply its width by its height. And to compute theperimeter we add up the lengths of
all sides, which in this case is twice the width plus twice theheight.

Java uses a notation to specify mathematical computations (a mathematical expression) that is
mostly familiar from math. As we can see from the statement that computesarea, we use the*
arithmetic operatorto specify multiplication.

So that statement instructs Java to multiply together theint value found in the variablewidth
by theint value found in the variableheight and store the product in theint variablearea.

The computation ofperimeter is a bit more complicated, but still pretty straightforward. We
see that addition is specified by+ and that we can use numbers in our expressions as well as values
stored in variables.

We do need to know in what order Java will perform the operations here. If it does2 * width,
then adds 2 to that result, multiplying that resuly byheight, we will get the wrong answer.
Fortunately, Java follows a strictorder of operations. In this case, we say that multiplication has
a higherprecedencethan addition, so Java will compute2 * width, then2 * height, then
add together those results.

We will look in more detail at order of operations as we encounter other mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Java “does the right thing” when we con-
catenate string literals withint values.

Floating-point Values

Of course, are numbers are not always integers. Our next example, is to perform a simple miles per

6

CSC 523 Advanced Programming Summer 2014

gallon computation. Again, we will prompt for inputs, compute our answer, and report the result.

What do we need to know to make this example work?

• If we want to store non-integer values, which are calledfloating-point valuesin Java, we use
variables of typedouble instead ofint.

• If we want to read indouble value from aScanner, we use thenextDouble method.

• Division is specified by the/ operator.

See Example: MilesPerGallon

Note the difference between integer division and floating-point division by trying the above first
with int data, then withdouble data.

When we divide twoint values using/, the result is thequotient, and we throw away the remain-
der. If we want the remainder (and only the remainder), we canuse the% operator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands areint values, results in anint quotient. Ifeither
operand (or both) is already adouble, the results is adouble and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using any combination of the following:

* multiplication
/ division
% remainder
+ addition
- subtraction

In a long expression such as

12 + 9 / 4 - 18 % 4 * 19

there are choices to be made in how to evalulate. Fortunately, Java makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to right if there are multiple such
operations

2. multiplications, divisions, and remainders are computed, again left to right

7

CSC 523 Advanced Programming Summer 2014

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negations, and there are none.

Then, we do the multiplication, division, and remainder operations. Since these are all integer
values, the any division will be computed as an integral quotient.

So, the9 / 4 evaulates to2 first. Giving

12 + 2 - 18 % 4 * 19

Next,18 % 4 is evaluated to2 (the remainder when we divide 18 by 4). Giving:

12 + 2 - 2 * 19

One multiplication remains, so we compute the2 * 19 as38, giving:

12 + 2 - 38

We are left with only additions and subtractions, which are evaulated left to right.12 + 2 be-
comes14, leaving us:

14 - 38

and after the last subtraction, we have-24 for a final result.

The same rules apply if we have data in variables declared as eitherint or double values.

If we wish to override the default rules, just like in math, wecan place parentheses around any
lower-precedence operation that we wish to have performed before some higher-precedence oper-
ation, or if we want to change the order among same-precedence operations to do some further to
the right before some further to the left.

Named Constants
The next program, which we will develop in class is going to dothe following:

• Read in 2 lines of input. Each contains the name of a baseball team (which must be a single
word) and the number of runs that team scored.

• Report the total runs scored.

• Report the average number of runs per inning, both as a decimaland as a mixed number (a
whole number followed by a fraction).

8

CSC 523 Advanced Programming Summer 2014

See Example: RunsScored

This example is the first one that demonstrates an important feature of good programming style:
the use ofnamed constants.

In this case, we are going to assume a baseball game has 9 innings. But perhaps in some other
cases, there are 6 or 7 inning games. So we define a constant:

final int NUMBER_OF_INNINGS = 9;

As our programs become more complex, we will be using many numeric values. Aliteral is a value
that is written into the code of a program that is not stored ina variable. Using many somewhat
arbitrary numeric values as literals in a program can make the program difficult to understand and
modify. We can improve the situation by associating the values with names so that we are reminded
what the values signify when we see the names used.

Java includes a mechanism to enable us to use such names effectively. If you include the word
“final” in a variable’s declaration, this indicates that the valueassigned to it in the declaration
will never change. This means that its value cannot be changed (possibly by mistake).

It also means that we can change the value in just that one place if we decide to change the number
of innings in a game (at which point we would have to recompileour program). Otherwise, we’d
need to remember to change all instances of the number if we changed any.

A couple other notes from this program:

• We read both aString and anint from the same keyboard input line.

• We need to be careful that the addition of the two scores are done before the string concate-
nation in our printout.

• We need to be careful that the result of ourint division does not throw away any fractional
part in the case where we want to store the result in adouble.

• We use both integer division and the remainder operator to compute our mixed number result.

Conditionals
The few programs we have seen so far have had one thing in common: they are entirelysequen-
tial. The statements in ourmain methods all execute, one after another, in the order they are
encountered in our program.

From your programming experience, you know very well that programs need to be able tomake
choices. If a certain condition is “true” we would like to do one thing, if it’s “false” we would do
something else or possibly nothing at all.

Thinking of every day algorithms, this is something we do allthe time.

9

CSC 523 Advanced Programming Summer 2014

• If I am still hungry, I will go for seconds.

• If it is a weekday, I will set my alarm to get up for class. Otherwise, I will sleep as long as I
would like.

• If the dough is too watery, add more flour.

• If the student’s score is at least 95% on the spelling test, put a sticker at the top.

Java’sif Statement

The workhorse of Java (and most programming languages) forconditional executionis theif
statement.

The basic form is

if (<boolean condition>) {
statement1;
statement2;
...

}

where<boolean condition> is some Java expression that evaluates totrue or false. If
it evaluates totrue, the statements inside the curly braces following the condition are executed.
Otherwise, they are skipped.

Used in a program:

See Example: OlderThanJava

There are many things that can be used to construct a boolean expression, but we will start with
the standard relational operators and use them to compare numeric values.

Expression When is ittrue?
x > y whenx is greater thany
x < y whenx is less thany
x >= y whenx is greater than or equal toy
x <= y whenx is less than or equal toy
x == y whenx is equal toy
x != y whenx is not equal toy

Java’sif-else Construct

Theif statement we saw above allows us to execute a statement or group of statements if the
condition is true. Often, we want to execute one set of statements if the condition is true and
another set if the condition is false.

10

CSC 523 Advanced Programming Summer 2014

We will expand ourOlderThanJava program to do this. Here, we print a different message if
the person is younger than or the same age as Java (in additionto the previous message when the
person is older).

In Java, we can use theif-else construct.

if (<boolean condition>) {
statement1A;
statement1B;
...

}
else {

statement2A;
statement2B;
...

}

where<boolean condition> is some Java expression that evaluates totrue or false.

See Example: OlderYoungerThanJava

We will next consider another example ofif statements in Java, but with the added bonus of using
a different mechanism for input and output.

The problem: we wish to write a program that calculates the number of full payments needed for
a no-interest loan where we are given a loan amount and desired monthly payment. This number
is reported. If additional funds are due after those full payments are made, that is reported as well.

See Example: NoInterestLoan

The comments in that example describe in detail three new items:

• The use ofJOptionPane.showInputDialog to bring up a dialog box with a message
and a text box for input, and returning the text typed into thebox as aString.

• The use of Java’sInteger.parseInt method to convert aString to anint, which is
necessitated here because theJOptionPane.showInputDialog only returnsString
values.

• The use of Java’sJOptionPane.showMessageDialog to bring up a dialog box to
display some program output.

Nested Conditionals

There is nothing stopping us from putting conditionals inside of conditionals. Consider this
decision-making problem of whether it’s a good idea to cancel classes on a given day so we can go
skiing.

11

CSC 523 Advanced Programming Summer 2014

Suppose we are only willing to go skiing if the temperature will be no higher than 50 degrees F
and there is at least 6 inches of snow on the ground in the mountains.

We can ask either of the questions (temperature or snow cover) first, and if that response doesn’t
disqualify the day as a ski day, only then will we ask the other. Let’s ask temperature first, then if
the temperature is cool enough, ask about the snow cover.

All we really need to understand here is that any set of statements, including another conditional,
can be placed on one of the branches of the first conditional.

See Example: ShouldWeSki

Java’sif-else-if Construct

Our next example is a program that asks for the user’s name andhometown, then displays a mes-
sage that indicates whether the length of (number of characters in) the name is more than, less than,
or the same as the length of the town.

We have seen most of what we need to do this, the exception being how we can compute the length
of a string.

Note that there are 3 possible cases: the name is shorter, thetown is shorter, or they are the same
length. Since anif statement only has two choices, we will need more than oneif statement.

We could accomplish this with a nestedif as we did for the previous example. However, there is
a variant on theif-else construct that allows us to check multiple conditions in a sequence and
(optionally) perform an “otherwise” case at the end.

It is sometimes called the “if else-if” construct, and lookslike this:

if (cond1) {
// cond1 true stuff

}
else if (cond2) {

// cond2 true stuff (only can happen if cond1 false)
}
else if (cond3) {

// cond3 true stuff (only can happen if cond1 and cond2 false)
}
...
else if (condn) {

// condn true stuff (only can happen if all previous conds false)
}
else {

// "otherwise" -- will happen if all previous conds false
}

See Example: NameAndTown

12

CSC 523 Advanced Programming Summer 2014

In our program we can see that construct where we first check ifthe name is shorter. If not, we
check if the name is longer. If neither was true, then they must have been equal in length, so the
final else is executed.

Also notice that we also have a mechanism in Java to compute the length of aString.

Java’sString class is very powerful, and we will see much of its functionality as we go forward.
All we have done in examples so far is to declare variables capable of holdingString references,
assignString values to them, and use those values in constructing outputs.

If we have aString in a variables, we can compute its length with

s.length();

Boolean data and boolean expressions
Our discussion of conditional execution needs to include a look at more complex boolean expres-
sions.

The common boolean expression operators are expressed in Java as follows:

• arithmetic comparisons:== to test for equality,!= to test for inequality, and the inequality
tests:<, <=, >, and>=.

• &&, which is theandoperator. Its result istrue if both of its operands evaluates totrue.

• ||, which is theor operator. Its result istrue if either of its operands evaluates totrue.

• ! – which evaluates to the boolean opposite of its only operand.

We will encounter all of these in meaningful examples going forward, but for now, we can see
many of them in action in this example.

See Example: BooleanDemo

See the comments therein to see some details.

In particular, note the precedence of these operators:&& is evaluated before||, much like multi-
plication is evaluated before addition in an arithmetic expression.

Important note: you need to be very careful that you do specify these operators as&& and|| rather
than& and|. The single-character operators will perform a bitwise and(or) rather than a logical
and (or), which is not usually what you want..

Armed with these constructs and a few more we will see in this example, we can now tackle a more
complicated problem.

See Example: MassPikeTolls

13

CSC 523 Advanced Programming Summer 2014

The comment at the top of the Java program describes the problem.

We end up with 3 possible outputs:

• There is a full toll if both entry and exit were at an interchange numbered 6 or higher, or if
we are driving a truck.

• There is no toll if both entry and exit were at an interchange numbered 6 or lower, and we
are not driving a truck.

• There is a toll on only part of the trip (east of interchange 6)if we entered or exited on one
side of interchange 6

See the comments throughout the Java program for more information. Note in particular these new
Java methods and constructs:

• The use ofSystem.exit(1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

• The use of a more complex form ofJOptionPage.showMessageDialog to more
clearly indicate an error message as opposed to an informational message like those we
have used previously.

• The use of theString’s equals method to compareString values. We cannot use==
to compareStrings for equality in most cases. Java will accept it, but it does not have the
meaning we wish it to have in this context. More on this later in the semester.

The switch Statement

A common pattern in programming is to have a series of statements of the form:

if (x == 0) {
// do stuff for x == 0

}
else if (x == 1) {

// do stuff for x == 1
}
else if (x == 2) {

// do stuff for x == 2
}
...
else if (x == 8) {

// do stuff for x == 8
}
else {

// do stuff when x is none of the above
}

14

CSC 523 Advanced Programming Summer 2014

Let’s look at an example where this occurs. Consider a programthat tells you which Computer
Science faculty member you can find in each of the offices in theAlbertus 400 suite.

See Example: CSOfficesIfElse

Java (and many other languages) provide a special constructwe can use in situations like this that
can be a bit more convenient.

switch (x) {
case 0:

// do stuff for x == 0
break;

case 1:
// do stuff for x == 1
break;

case 2:
// do stuff for x == 2
break;

...
case 8:

// do stuff for x == 8
break;

default:
// do stuff when x is none of the above
break;

}

Until Java version 6, this worked only when the comparison iffor equality and we are using one
of these data types:char, byte, short, orint. So far, we have only usedint variables from
among this group. Note that it does not work fordouble. As of Java 7, the cases can beString
literal values.

Also note that eachcase is ended by a special statement:break;

If we rewrite the example to use aswitch statement, it would look like this:

See Example: CSOfficesSwitch

If we mistakenly leave out abreak; statement, Java will “fall through” to the nextcase. Some-
times this is handy and just what we want, but the vast majority of the time, we want abreak; at
the end of casecase.

One situation where this does come in handy is when we want to do the same thing for multiple
cases:

See Example: LittlePrimes

Formatting Output

15

CSC 523 Advanced Programming Summer 2014

Our next example has more conditionals, but also shows how wecan nicely format output that
contains floating point numbers.

See Example: Payroll

The key points to notice from this example:

• The use of named constants for numbers that are unlikely to change from one execution of
the program to the next.

• The declaration of variables that will be assigned inside theif-else before theif-else.
If they were defined within the body of theif parts and/orelse part, those variables would
exist onlywithin those blocks of code.

• The declaration, construction, and use ofDecimalFormat objects to format our floating-
point output. See the text for more examples. The essentials:

– Like Scanner andJOptionPane, we need to tell Java if we intend to use aDecimalFormat
with

import java.text.DecimalFormat;

– Before we make use of one, we need to declare a variable of typeDecimalFormat
and construct an instance. The parameter we pass to thisconstructoris the number of
digits and any other characters we want. There are two examples in this proram, more
in the text.

– When we want to print out a floating point value as formatted by one of theseDecimalFormat
objects, we pass the floating point value to the object’sformat method. This returns
aString representation of that value using the specified format.

Formatting with printf

Another option for formatting output is theprintf method, available inSystem.out and
elsewhere. For those with C experience, it is very similar.

We used theprint andprintln methods for console output previously. Each of those methods
takes a single parameter, often aString, but which can be any primitive type or object type. Very
often, it is passed aString parameter constructed by concatenating severalString and other
values.

Theprintf function (also calledformat) works a little differently. It takes aString called a
format string, then an additional set of parameters that are determined bythe number and order of
format specifierswithin the format string.

Section 3.11 in Gaddis has plenty of good examples and some ofour later class examples will
make use ofprintf.

16

CSC 523 Advanced Programming Summer 2014

Repetition
Another fundamental reason that computer programs are so powerful is their ability to dorepeti-
tion.

The while loop

Java provides a number ofloop constructsto support this. Thewhile statement, or “while loop”,
is perhaps the most frequently used.

The syntax of awhile statement is:

while (condition)
{

...
}

As in theif statement, the condition used in awhile must be some expression that produces
aboolean value. The statements between the open and closed curly brackets are known as the
bodyof the loop.

A common way the while loop is used is as follows:

while (condition)
{

do something
change some variable so that next time you do

something a bit differently
}

The condition controlling thewhile loop will usually involve the variable that’s changing. If
nothing in the condition changes, then the loop will never terminate. Such a condition is called
an infinite loop. We avoid this, in general, by ensuring that our loops have a precise stopping
condition. While we might be able to look at an algorithm and say “hey, we should stop now”,
Java will not (and in fact cannot, in general) determine if a loop will not stop.

Armed with this construct, we can write this program:

See Example: PerfectSquares

Other than thewhile statement itself, we see one additional Java construct herethat has not come
up in previous examples:

nextNumber++;

Since increment and decrement operations on variables are extremely common in programming,
the designers of Java (and the designers of C before them), included a shorthand notation for these.

The above has the same effect as if we had written

17

CSC 523 Advanced Programming Summer 2014

nextNumber = nextNumber + 1;

There is also an example of aprintf method call in there.

Loops for Error Checking

We will use loops in many contexts, one of which is to allow us to reissue prompts and reread input
when an invalid value is entered.

To demonstrate this, we will improve on one of our old examples: the one where we determined
whether a trip on the Massachusetts Turnpike was toll free, partially tolled, or fully tolled.

See Example: MassPikeTollsBetter

The changes are all at the start of the program while we input values.

See the comments there for details.

The do-while Loop

Thewhile loop we saw in the last few examples is called apre-test loop. That is, we check the
condition before we enter the first time. This allows awhile loop to execute its body 0 times if
the condition is initially false.

In some circumstances, we want to execute the loop at least once. Such a loop is called apost-test
loop.

Consider the problem where we have a sequence of numbers to read in, say prices of items at a
supermarket checkout, for which we want to keep a running total to report at the end.

Java provides a construct we can use for this purpose – thedo-while loop.

It is basically the same as awhile loop, except we begin it with the keyworddo, follow with the
body of the loop, and end it with awhile keyword and condition.

do
{

...
} while (condition);

See Example: Checkout

This example demonstrates thedo-while construct.

One other Java construct here that we have not yet used is the+= assignment operator:

total += itemPrice;

Much like the++we saw recently for the increment operation (and the corresponding-- operation
for decrement), this is a shorthand notation for a common programming task: adding a value to a
variable and storing the result back in that variable:

18

CSC 523 Advanced Programming Summer 2014

total = total + itemPrice;

This shorthand exists for all of the standard arithmetic operators:-=, *=, /= and%=.

For example, if we wanted to double the value in a variablex, we could use the shorthand:

x *= 2;

You are never going to be required to use these shorthand operators, but they are convenient, and
you will need to recognize them in my examples.

Counting Loops

All of the loops we wish to have in our programs can be written using thewhile anddo-while
constructs we have just seen.

However, most programming languages include another construct that is typically used forcount-
ing loops. Java has such a construct, called afor loop.

Java’sfor loop looks a bit different, but essentially has all of the same components.

for (int number = 1; number <= 10; number++)
{

// do stuff - but omit number++ at end
}

The code in the parentheses consists of 3 parts; it is not justa condition as inif or while
statements. The parts are separated by semicolons. The firstpart is executed once when we first
reach thefor loop. It is used to declare and initialize the counter. The second part is a condition,
just as inwhile statements. It is evaluated before we enter the loop (ı,e it is a pre-test loop)
and before each subsequent iteration of the loop. It defines the stopping condition for the loop,
comparing the counter to the upper limit. The third part performs an update. It is executed at the
endof each iteration of thefor loop, just before testing the condition again. It is used to update
the counter.

We use the loop above in a straightforward example: calculating the sum of the first 10 integers.

See Example: Sum1To10

Notice how thefor localizes the use of the counter. This has two benefits. First, it simplifies the
body of the loop so that it is somewhat easier to understand the body. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequentlythroughout the remainder of the
course. For example, we couldcount downinstead of up:

19

CSC 523 Advanced Programming Summer 2014

See Example: Countdown

This includes not only a count down loop, but a loop whose starting condition depends on the
value in a variable instead of an integer constant. We can useany arithmetic expression for the
initialization and any boolean expression for the stoppingcondition.

If we wanted to count by 2’s to add up the even numbers:

See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

1

2
+

1

4
+

1

8
+

1

16
+ ...

If we continue this sum infinitely, the series sums to 1 (can you prove it?).

See Example: GeometricFractionalSum

This example has a straightforward counting loop structure, but has more work to do each time
around the loop. Not only do we need to make sure we iterate theproper number of times, we also
need to update the value of the next term to be added each time around.

Random Numbers
It is often useful have computer programs chooserandom numbers. Programs that implement
games might need to make decisions randomly. This could involve choosing a random direction
for a character to move, an order for shuffling a deck of cards,or to simulate the roll of a die.

We will see how this works in Java by looking at an example:

See Example: RandomDemo

If we want to use random numbers in our program, we need to construct aRandom object that we
can ask to generate our random numbers. This first requires that we add an appropriateimport
statement:

import java.util.Random;

Then in ourmain method, we construct an instance:

Random randomGenerator = new Random();

We can then get random values from ourRandom object by calling its methods includingnextInt
andnextDouble. See the RandomDemo example code for specifics.

A Random Number in a Game

20

CSC 523 Advanced Programming Summer 2014

We can use this capability in many ways. We will first implement a simple guessing game. We will
have the computer pick a random number between 1 and 100, and the user gets to make repeated
guesses until the guess is correct. The program helps out by giving a “higher” or “lower” response.

See Example: GuessingGame

Here, we just need to choose our random number for the answer,then have a loop that reads guesses
until the correct number is entered.

A Monte Carlo Method to Compute π

Not only games make use of random numbers. There is a class of algorithms knows asMonte
Carlo methodsthat use random numbers to help compute some result.

We will write programs that use a Monte Carlo method to estimate the value ofπ.

The algorithm is fairly straightforward. We repeatedly choose(x, y) coordinate pairs, where thex
andy values are in the range 0-1 (i.e.the square with corners at(0, 0) and(1, 1). For each pair, we
determine if its distance from(0, 0) is less than or equal to 1. If it is, it means that point lies within
the first quardant of a unit circle. Otherwise, it lies outside. If we have a truly random sample
of points, there should be an equal probability that they have been chosen at any location in our
square domain. The space within the circle occupiesπ

4
of the square of area 1.

So we can approximateπ by taking the number of random points found to be within the unit circle,
dividing that by the total number of points and multiplying it by 4!

We can see a simulation of this at:

On the web: http://en.wikipedia.org/wiki/File:Pi30K.gif at

Our program:

See Example: MonteCarloPi

Note that we can simply call ourRandom’s nextDouble method to get numbers in the 0.0 to
1.0.

21

