Computer Science 523

Advanced Programming

The College of Saint Rose
Summer 2014

Topic Notes: Java Overview/Review

There are many ways to write a program to solve a particulablpm correctly. In addition to
correctness, we will think about these implmentation géai®ur programs:
1. Efficiency

e use algorithms, data structures, and language constaucténtimize the amount of
processing power and memory needed

2. Robustness

e produce correct output for all inputs - including erroneoymsut
3. Adaptability

e a program can evolve over time with new requirements
4. Reusability

e develop general-purpose code that may be used in multiplatgins

Programming Languages
We will be programming in Java.

There are many programming languages, and Java is just amepéx Most programming lan-
guages all basically do the same thing, though some are naitdr than others at certain types of
tasks. We choose to study advanced programming in Javadeeitasia modern, object-oriented
language that runs on all modern computer systems. An apateghoice of programming lan-
guage makes it easier to write high-quality software.

All computer languages are aibstractionto make it more convenient to get computers to do what
we want them to do. We could write in O’s and 1's, but a varidtlanguages have been developed
to facilitate the development of software.

Most langauages, including C and C++ have compilers thaskrgasource code into a executable
program that runs on a particular machine. Java and somerotigern languages are different. All
Java compilers translate to a particulatual maching which, in turn, runs on specific computers.

This gives Java some advantages that we will discuss alagvdly. For now, we will look at
programming in Java as a general-purpose modern objemited programming language.

CSC 523 Advanced Programming Summer 2014

Java Basics
We begin with the obligitory first example:
See Example: Hello

Things to note in Hello.java:

e Everything in Java has to be inddass More about classes in a minute. In C, there are
no classes and in C++ there are classes, but you can writedosautside of any class in
addition to class methods.

e Some of you may have seen only Jamplets— this is a Javapplication We will look at
both during this semester.

e Each class can haveethods An application has a class that must haveaa n method with
the method signature:

public static void main(String[] args)

Exactly what is meant by all of these will become clear laker, basically this is where
execution will start when we run this program.

e To execute this program in BlueJ, we open the project, and#t olicthe class or classes to
bring up the source code. Compile with the “Compile” buttonviobsly). To run, we go
back to the project window, right click on the class that eam themai n method we want
to execute, and choose the entry from the dropdown to exéoeiteai n method.

A console window should pop up with your output. If your pragrwas taking input, you
would use that same window.

¢ Comments:

/'l starts comments which go to end of |ine
/* multi-line comments
are done like this =/

You most certainly have been strongly encouraged or, m&edylirequired to document
your program usingommentsn your previous courses.

The comment above the headerHel | 0. j ava is a special kind of comment, it starts
with / =* indicating that it is alavadoccomment. These comments are used to generate
documentation for Java programs automatically. We may &alavadoc more later.

CSC 523 Advanced Programming Summer 2014

e The text output is made by a call8 st em out . pri ntl n() which takes one argument
— a string to print to the terminal.

This plays the role of C'eri nt f and C++'scout .
Note: Syst em out . pri nt () does the same, but without the new line at the end.

We can extend this just a bit to see more about how to prodwefelusutput.
See Example: Seuss

This is basicallyHel | oWor | d all over, but there are a few little items that are new.

¢ Notice that the sentence “We know how.” is printed on the skmeeas “Well, we can do it.”.
That's because we used a different printing method for ttiertaSyst em out . pri nt.
This one works the same 8gst em out . pri nt | n exceptthat the outputis not advanced
to the next line at the end.

e The last statement includes soescape sequencésat cause the output to be formatted a
bit differently than it would otherwise appear. Escape seges begin with & character
and are followed by aontrol characterthat defines the behavior of the sequence. Here, we
have three:

1. \'t inserts a “tab” character, effectively indenting our outjouthis case,
2. \ n advances the output to a new line, and

3. \" prints the double quote character, which would otherwiseniy@ssible since a
regular" character would be interpreted as the end of the text we yrgtto print.

One bit of terminology at this point: the methd8igst em out . pri nt| nandSyst em out . pri nt
are part of thelava API(Application Programmer Interface). Any valid Java instibn comes
equipped with an extensive collection of pre-written saftevthat our programs can use.

Interactive Programs

To create nearly any interesting program, we need to be alpeotvide it withinput. This will
allow the program to react differently when presented wiffecent inputs.

See Example: HelloYou

First, to get information from the keyboard into our programe again turn to the Java API. There
are several mechanisms available, a few of which we will Bsesemester. But we will start with
one called é&scanner .

In order to use &canner , we will need to tell Java that we intend to use it, by insertime line:

i nport java.util.Scanner;

CSC 523 Advanced Programming Summer 2014

at the top of our program (before the class header). We walllager how to determine exactly
what to “import” in thesemport statementt use various Java API functionality, but for now, just
know that this is what we need to do to us8@anner .

Then, in ounmai n method, where we wish to access information from the keyhoeeconstruct
aScanner that we can use in our program. This is done with the line:

Scanner input = new Scanner(Systemin);

This is the first example we've seen here ofaject construction There’s actually quite a bit
going on in this line, and we’ll examine it more carefully imanute. But for now, we’re creating
a Scanner that usesSyst em i n (which is Java’s cryptic way of saying “what is typed at the
keyboard”), and giving it a name,nput . i nput is alocal variable which is a fundamental
construct in nearly any programming language, and agaithatave will examine more carefully
in a moment.

Now that we have &canner calledi nput , we can ask it to give us the next chunk of text that
was typed at the keyboard. There are many possibilities fatwe mean by “chunk” but for now,
we just want the word that someone types in as their namesJawanner provides a method
that does just that, callatext .

We will also need a name for the word that was typed in, so wepcan it out later. This is all
accomplished with the line:

String nane = input.next();

Before we carry on further, we need to consider the concepiridbies a little more closely.

A variable is a named storage location in the computer's memory. We usgiable when we
have determined that there is some piece of data that we haresiJava statement, and we need
to remember that information for use in later statements.

When we need a variable in our program, we nuaestlarethat variable to Java, which is just a
fancy way of saying that we are going to introduce a name taJaua program and tell Java what
type or kind, of data we intend to store there.

A variable declaration takes one of two forms:
type nane;
or

type name = initial Val ue;

CSC 523 Advanced Programming Summer 2014

where “type” is thedata type(or “ kind of data”) we will store, and “name” is the identifiere
intend to use to refer to that data. In the second form, we ialfalize the variable to have a
specific value.

You have certainly seen many data types that store a varidinas of information. For now, we
are using two of Java’s:

e Scanner — which is the keyboard input mechanism we wish to use

e Stri ng - a collection of text, like a word or sentence

We give ourScanner the namea nput and theSt r i ng the namenane.

When naming our variables, we need to keep in mind severaldemasions:

e The name must be a valid Jadentifier. This means it must consist only of letters, numbers,
the dollar sign character, and the underscore charactardthit can only start with a letter).

e The name should follow Javarmming conventionRecall that for variables, we use lower-
case letters, except when we have a name that is made up gblewtords, in which case
we capitalize all but the first word.

e The name should be meaningful. That is, it should give somtied@tion of what the variable
is to be used for. The names here satisfy that requirementut implies that this is where
we get our input, andane implies that this is the name of something.

Once we have a variable, we can make use of its value lateriprogram. We do that here when
we call thenext method of ourScanner named nput and when we use th®t r i ng named
nanme in theSyst em out . pri nt | n statement at the end of our program.

One last new idea here is that we now have something more eanagl the text to be printed
by Syst em out . pri ntl| n. It's not just some text in double quotes, but some text inbd®u
guotes, followed by &, followed by the name of oust r i ng variable.

This is an example dftring concatenationWe have thestring literal (i.e., some text inside double
guotes) to which we “append” the text in the variabkene.

Working With Numbers

You know that computers often do just that: they compute witmbers. So next, we consider
some examples of programs that work with numbers to showminagtyou how Java works with
numeric values.

Integer Values

We start simple. Let’s compute a rectangle’s area and pe&ime

5

CSC 523 Advanced Programming Summer 2014

See Example: Rectangle
There are a few things to note in this program.

First, we are working with numbers rather than words. Th&nges how we read the data from
the keyboard through oBcanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions oféhtangle are integer values.

The Java type we will most often use to store an integer valaaii nt . We declare and initialize
i nt variables namedi dt h andhei ght to store the rectangle’s dimensions.

i nt is one of Java'primitive data typesWe will see several other examples. These are the only
types that are usually specified with an all-lowercase kegwo

We next need to use a different methodSsfanner to force it to look for an integer and return it
in as a Javant instead of &t ri ng. That method is calledext | nt .

Once we have our width and height, we need to compute the atepaaimeter from them. For
this, we need to declare two marat variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you knat tih compute the area of a rect-
angle, we multiply its width by its height. And to compute {erimeter we add up the lengths of
all sides, which in this case is twice the width plus twice hiegyht.

Java uses a notation to specify mathematical computatensathematical expressiprihat is
mostly familiar from math. As we can see from the statemeait tomputesr ea, we use the
arithmetic operatotto specify multiplication.

So that statement instructs Java to multiply togetheii tie value found in the variablei dt h
by thei nt value found in the variableei ght and store the product in thent variablear ea.

The computation oper i net er is a bit more complicated, but still pretty straightforwaiye
see that addition is specified byand that we can use numbers in our expressions as well asvalue
stored in variables.

We do need to know in what order Java will perform the openativere. If it doe®2 * w dt h,
then adds 2 to that result, multiplying that resuly tgi ght , we will get the wrong answer.
Fortunately, Java follows a striorder of operations In this case, we say that multiplication has
a higherprecedencéhan addition, so Java will compuge * wi dt h, then2 * hei ght, then
add together those results.

We will look in more detail at order of operations as we end¢eunther mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Jasasdhe right thing” when we con-
catenate string literals withnt values.

Floating-point Values

Of course, are numbers are not always integers. Our nextggaisto perform a simple miles per

6

CSC 523 Advanced Programming Summer 2014

gallon computation. Again, we will prompt for inputs, con@wur answer, and report the result.

What do we need to know to make this example work?

¢ If we want to store non-integer values, which are cafledting-point value#n Java, we use
variables of typeloubl e instead of nt .

e If we want to read irdoubl e value from aScanner , we use thenext Doubl e method.

¢ Division is specified by thé operator.

See Example: MilesPerGallon

Note the difference between integer division and floating¥pdivision by trying the above first
with i nt data, then witldoubl e data.

When we divide two nt values using , the result is thguotient and we throw away the remain-
der. If we want the remainder (and only the remainder), weusathe&operator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands ard values, results in annt quotient. Ifeither
operand (or both) is alreadydeubl e, the results is doubl e and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using anybawettion of the following:

* | multiplication
/ division

%/| remainder
+ addition

- subtraction

In a long expression such as
12 + 9/ 4 - 18 %4 19

there are choices to be made in how to evalulate. Fortunalalta makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to righthere are multiple such
operations

2. multiplications, divisions, and remainders are comguagain left to right

7

CSC 523 Advanced Programming Summer 2014

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negatantsthere are none.

Then, we do the multiplication, division, and remainder ragiens. Since these are all integer
values, the any division will be computed as an integral ignot

So, the9 / 4 evaulates t@ first. Giving

12 + 2 - 18 %4 ~ 19

Next,18 % 4 is evaluated t@ (the remainder when we divide 18 by 4). Giving:
12 + 2 - 2 = 19

One multiplication remains, so we compute ther 19 as38, giving:

12 + 2 - 38

We are left with only additions and subtractions, which arauated left to right.12 + 2 be-
comesl4, leaving us:

14 - 38

and after the last subtraction, we hav#4 for a final result.
The same rules apply if we have data in variables declaredhes ent ordoubl e values.

If we wish to override the default rules, just like in math, wen place parentheses around any
lower-precedence operation that we wish to have perforreéaré some higher-precedence oper-
ation, or if we want to change the order among same-precedgperations to do some further to
the right before some further to the left.

Named Constants

The next program, which we will develop in class is going tahefollowing:
e Read in 2 lines of input. Each contains the name of a basebafl (ehich must be a single
word) and the number of runs that team scored.
e Report the total runs scored.

e Report the average number of runs per inning, both as a deamdahs a mixed number (a
whole number followed by a fraction).

CSC 523 Advanced Programming Summer 2014

See Example: RunsScored

This example is the first one that demonstrates an imporgattife of good programming style:
the use ohamed constants

In this case, we are going to assume a baseball game has g§snridut perhaps in some other
cases, there are 6 or 7 inning games. So we define a constant:

final int NUVBER_OF_I NNI NGS = 9;

As our programs become more complex, we will be using manyenienaalues. Aiteral is a value
that is written into the code of a program that is not stored irariable. Using many somewhat
arbitrary numeric values as literals in a program can ma&etbgram difficult to understand and
modify. We can improve the situation by associating theeshith names so that we are reminded
what the values signify when we see the names used.

Java includes a mechanism to enable us to use such namesrelfedf you include the word
“f i nal ”in a variable’s declaration, this indicates that the vahssigned to it in the declaration
will never change. This means that its value cannot be clthfppssibly by mistake).

It also means that we can change the value in just that one fjlae decide to change the number
of innings in a game (at which point we would have to recomgue program). Otherwise, we'd
need to remember to change all instances of the number if vageld any.

A couple other notes from this program:

We read both &t ri ng and ani nt from the same keyboard input line.

We need to be careful that the addition of the two scores ane Hefore the string concate-
nation in our printout.

We need to be careful that the result of ount division does not throw away any fractional
part in the case where we want to store the resultdoabl e.

We use both integer division and the remainder operatortgcte our mixed number result.

Conditionals

The few programs we have seen so far have had one thing in contmey are entirelsequen-
tial. The statements in ourai n methods all execute, one after another, in the order they are
encountered in our program.

From your programming experience, you know very well thaigpams need to be able toake
choices If a certain condition is “true” we would like to do one thingit’s “false” we would do
something else or possibly nothing at all.

Thinking of every day algorithms, this is something we daladl time.

9

CSC 523 Advanced Programming Summer 2014

If I am still hungry, | will go for seconds.

If it is a weekday, | will set my alarm to get up for class. Othise, | will sleep as long as |
would like.

If the dough is too watery, add more flour.

If the student’s score is at least 95% on the spelling testasticker at the top.

Java’'si f Statement

The workhorse of Java (and most programming languagesjdioditional executions thei f
statement

The basic form is

i f (<bool ean condition>) {
statenent 1;
st at enent 2;

where<bool ean condi ti on>is some Java expression that evaluatesrtoe orf al se. If
it evaluates td r ue, the statements inside the curly braces following the damrdare executed.
Otherwise, they are skipped.

Used in a program:
See Example: OlderThanJava

There are many things that can be used to construct a bookgaession, but we will start with
the standard relational operators and use them to comparerituwvalues.

Expression Whenisitr ue?

X >y whenx is greater tharyy

X <y whenx is less thary

X >=y whenx is greater than or equal to
X <=y whenx is less than or equal tp

X == whenx is equal toy

X =y whenx is not equal toy

Java’si f - el se Construct

Thei f statement we saw above allows us to execute a statementu gfstatements if the
condition is true. Often, we want to execute one set of stamsif the condition is true and
another set if the condition is false.

10

CSC 523 Advanced Programming Summer 2014

We will expand ourd der ThanJava program to do this. Here, we print a different message if
the person is younger than or the same age as Java (in additibe previous message when the
person is older).

In Java, we can use thd - el se construct.

I f (<bool ean condition>) ({
st at enent 1A,
st at enent 1B;

}
el se {
st at enent 2A;
st at enent 2B;
}

where<bool ean condi ti on>is some Java expression that evaluatdsrtoe orf al se.
See Example: OlderYoungerThanJava

We will next consider another exampleidf statements in Java, but with the added bonus of using
a different mechanism for input and output.

The problem: we wish to write a program that calculates thalyer of full payments needed for
a no-interest loan where we are given a loan amount and desioathly payment. This number
is reported. If additional funds are due after those fullpapts are made, that is reported as well.

See Example: NolnterestLoan

The comments in that example describe in detail three nensite

e The use oflOpt i onPane. showl nput Di al og to bring up a dialog box with a message
and a text box for input, and returning the text typed intolibg as &St r i ng.

e The use of Java’knt eger . par sel nt method to convert 8t r i ng to ani nt, which is
necessitated here becauseif@pt i onPane. show nput Di al og onlyreturnsStri ng
values.

e The use of Java’dOpt i onPane. showvessageDi al og to bring up a dialog box to
display some program output.

Nested Conditionals

There is nothing stopping us from putting conditionals diesbf conditionals. Consider this
decision-making problem of whether it's a good idea to cholesses on a given day so we can go
skiing.

11

CSC 523 Advanced Programming Summer 2014

Suppose we are only willing to go skiing if the temperaturé ke no higher than 50 degrees F
and there is at least 6 inches of snow on the ground in the ramsnt

We can ask either of the questions (temperature or snow cbrstr and if that response doesn't
disqualify the day as a ski day, only then will we ask the athet’s ask temperature first, then if
the temperature is cool enough, ask about the snow cover.

All we really need to understand here is that any set of statésnincluding another conditional,
can be placed on one of the branches of the first conditional.

See Example: ShouldWeSki

Java’'si f - el se-i f Construct

Our next example is a program that asks for the user's naméa@metown, then displays a mes-
sage that indicates whether the length of (number of chensairt) the name is more than, less than,
or the same as the length of the town.

We have seen most of what we need to do this, the exceptiog heim we can compute the length
of a string.

Note that there are 3 possible cases: the name is shorteovwhes shorter, or they are the same
length. Since anf statement only has two choices, we will need more than dnstatement.

We could accomplish this with a nestefl as we did for the previous example. However, there is
a variant on the f - el se construct that allows us to check multiple conditions ing@usace and
(optionally) perform an “otherwise” case at the end.

It is sometimes called the “if else-if” construct, and lodks this:

if (condl) {
/1l condl true stuff
}
else if (cond2) {
/'l cond2 true stuff (only can happen if condl fal se)
}
else if (cond3) {
/'l cond3 true stuff (only can happen if condl and cond2 fal se)

}

else if (condn) {
/1 condn true stuff (only can happen if all previous conds false)

}
el se {

/1l "otherwi se" -- will happen if all previous conds false
}

See Example: NameAndTown

12

CSC 523 Advanced Programming Summer 2014

In our program we can see that construct where we first chetleihame is shorter. If not, we
check if the name is longer. If neither was true, then theytrhase been equal in length, so the
final el se is executed.

Also notice that we also have a mechanism in Java to compatenigth of &t r i ng.

Java’'sSt r i ng class is very powerful, and we will see much of its functiatyads we go forward.
All we have done in examples so far is to declare variablealdgpf holdingSt r i ng references,
assignSt r i ng values to them, and use those values in constructing outputs

If we have aSt ri ng in a variables, we can compute its length with

s.length();

Boolean data and boolean expressions

Our discussion of conditional execution needs to includeoé bt more complex boolean expres-
sions.

The common boolean expression operators are expressediasifollows:

e arithmetic comparisons:= to test for equality! = to test for inequality, and the inequality
tests:<, <=, >, and>=.

e &&, which is theand operator. Its result isr ue if both of its operands evaluatestto ue.

| | , which is theor operator. Its result isr ue if either of its operands evaluatesttoue.

I —which evaluates to the boolean opposite of its only operand

We will encounter all of these in meaningful examples goiogvard, but for now, we can see
many of them in action in this example.

See Example: BooleanDemo
See the comments therein to see some details.

In particular, note the precedence of these opera&a#ss evaluated beforg| , much like multi-
plication is evaluated before addition in an arithmeticresgion.

Important note: you need to be very careful that you do spéedse operators & and| | rather
than& and| . The single-character operators will perform a bitwise @)l rather than a logical
and (or), which is not usually what you want..

Armed with these constructs and a few more we will see in tkesrgle, we can now tackle a more
complicated problem.

See Example: MassPikeTolls

13

CSC 523 Advanced Programming Summer 2014

The comment at the top of the Java program describes thegpnobl

We end up with 3 possible outputs:

e There is a full toll if both entry and exit were at an intercgamumbered 6 or higher, or if
we are driving a truck.

e There is no toll if both entry and exit were at an interchangmbered 6 or lower, and we
are not driving a truck.

e There is a toll on only part of the trip (east of interchangéf 8)e entered or exited on one
side of interchange 6

See the comments throughout the Java program for more iat@m Note in particular these new
Java methods and constructs:

e The use oSyst em exi t (1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

e The use of a more complex form dfOpt i onPage. showMessageDi al og to more
clearly indicate an error message as opposed to an infanatmessage like those we
have used previously.

e The use of thé&t ri ng’s equal s method to compar8gt r i ng values. We cannot use=
to comparest r i ngs for equality in most cases. Java will accept it, but it doztshave the
meaning we wish it to have in this context. More on this latethie semester.

The swi t ch Statement

A common pattern in programming is to have a series of statesvd the form:

if (x == 0) {
/] do stuff for x ==

}
else if (x == 1) {
[/ do stuff for x ==

}
else if (x == 2) {
/[l do stuff for x ==

}

else if (x == 8) {
/] do stuff for x ==

}

el se {
[/ do stuff when x is none of the above

}

14

CSC 523 Advanced Programming Summer 2014

Let’s look at an example where this occurs. Consider a proghamtells you which Computer
Science faculty member you can find in each of the offices ithertus 400 suite.

See Example: CSOfficeslfElse

Java (and many other languages) provide a special consteucan use in situations like this that
can be a bit more convenient.

switch (x) {

case O:
/[l do stuff for x ==
br eak;

case 1:
/[l do stuff for x ==
br eak;

case 2:
/[l do stuff for x ==
br eak;

case 8:
[/ do stuff for x ==
br eak;
defaul t:
[/ do stuff when x is none of the above
br eak;

}

Until Java version 6, this worked only when the comparisdieiifequality and we are using one
of these data typeshar , byt e, short, ori nt . So far, we have only usect variables from
among this group. Note that it does not work fubl e. As of Java 7, the cases can®ter i ng
literal values.

Also note that eachase is ended by a special statemebt:eak;
If we rewrite the example to usesam t ch statement, it would look like this:
See Example: CSOfficesSwitch

If we mistakenly leave out br eak; statement, Java will “fall through” to the nexase. Some-
times this is handy and just what we want, but the vast mgjofithe time, we want &r eak; at
the end of casease.

One situation where this does come in handy is when we wan thel same thing for multiple
cases:

See Example: LittlePrimes

Formatting Output

15

CSC 523 Advanced Programming Summer 2014

Our next example has more conditionals, but also shows howanmenicely format output that
contains floating point numbers.

See Example: Payroll

The key points to notice from this example:

e The use of named constants for numbers that are unlikelydgogahfrom one execution of
the program to the next.

e The declaration of variables that will be assigned inside fh- el se before thea f - el se.
If they were defined within the body of thé parts and/oel se part, those variables would
exist onlywithin those blocks of code.

e The declaration, construction, and usebetti mal For mat objects to format our floating-
point output. See the text for more examples. The essentials

— Like Scanner andJOpt i onPane, we need to tell Java if we intend to usBeci nal For mat
with

i mport java.text. Deci mal For mat ;

— Before we make use of one, we need to declare a variable oDgpenal For mat
and construct an instance. The parameter we pass todhgructoris the number of
digits and any other characters we want. There are two exanplhis proram, more
in the text.

— When we want to print out a floating point value as formattedryaf theséeci mal For mat
objects, we pass the floating point value to the objdadsmat method. This returns
aSt ri ng representation of that value using the specified format.

Formatting with printf

Another option for formatting output is ther i nt f method, available irfByst em out and
elsewhere. For those with C experience, it is very similar.

We used ther i nt andpri nt | n methods for console output previously. Each of those method
takes a single parameter, ofteBStar i ng, but which can be any primitive type or object type. Very
often, it is passed &t r i ng parameter constructed by concatenating se\&rai ng and other
values.

Thepri nt f function (also called or mat) works a little differently. It takes &t r i ng called a
format string then an additional set of parameters that are determinéaayumber and order of
format specifiersvithin the format string.

Section 3.11 in Gaddis has plenty of good examples and soroardater class examples will
make use opri nt f.

16

CSC 523 Advanced Programming Summer 2014

Repetition

Another fundamental reason that computer programs arewerfad is their ability to dorepeti-
tion.

Thewhi | e loop

Java provides a number laiop construct$o support this. Thahi | e statement, or “while loop”,
is perhaps the most frequently used.

The syntax of ahi | e statement is:

whil e (condition)

{
}

As in thei f statement, the condition used invai | e must be some expression that produces
abool ean value. The statements between the open and closed curlyelsaare known as the
bodyof the loop.

A common way the while loop is used is as follows:

whil e (condition)

{

do sonet hi ng
change sone variable so that next time you do
something a bit differently

}

The condition controlling thevhi | e loop will usually involve the variable that's changing. If
nothing in the condition changes, then the loop will nevemiaate. Such a condition is called
an infinite loop We avoid this, in general, by ensuring that our loops haveeaige stopping
condition. While we might be able to look at an algorithm ang $sy, we should stop now”,
Java will not (and in fact cannot, in general) determine d@p will not stop.

Armed with this construct, we can write this program:
See Example: PerfectSquares
Other than thehi | e statement itself, we see one additional Java constructhatréas not come
up in previous examples:

next Nunber ++;
Since increment and decrement operations on variables<asely common in programming,
the designers of Java (and the designers of C before theth)dad a shorthand notation for these.

The above has the same effect as if we had written

17

CSC 523 Advanced Programming Summer 2014

next Nunber = next Nunber + 1;

There is also an example opa i nt f method call in there.

Loops for Error Checking

We will use loops in many contexts, one of which is to allowasgissue prompts and reread input
when an invalid value is entered.

To demonstrate this, we will improve on one of our old exarsptée one where we determined
whether a trip on the Massachusetts Turnpike was toll fraedigily tolled, or fully tolled.

See Example: MassPikeTollsBetter
The changes are all at the start of the program while we inpluies.

See the comments there for details.

The do- whi | e Loop

Thewhi | e loop we saw in the last few examples is calledra-test loop That is, we check the
condition before we enter the first time. This allowsta | e loop to execute its body O times if
the condition is initially false.

In some circumstances, we want to execute the loop at least &@uch a loop is calledmost-test
loop.

Consider the problem where we have a sequence of numbersdtantesay prices of items at a
supermarket checkout, for which we want to keep a runnirgg totreport at the end.

Java provides a construct we can use for this purpose édhehi | e loop.

It is basically the same asvdi | e loop, except we begin it with the keywodb, follow with the
body of the loop, and end it withahi | e keyword and condition.

do
{

} while (condition);
See Example: Checkout

This example demonstrates ttie- whi | e construct.
One other Java construct here that we have not yet used+sthesignment operator:
total += itenPrice;
Much like the++ we saw recently for the increment operation (and the coomdipg- - operation

for decrement), this is a shorthand notation for a commognarmming task: adding a value to a
variable and storing the result back in that variable:

18

CSC 523 Advanced Programming Summer 2014

total = total + itenPrice;

This shorthand exists for all of the standard arithmeticafes:- =, * =, / = and%- .

For example, if we wanted to double the value in a variahlee could use the shorthand:
X *= 2;

You are never going to be required to use these shorthandtopgrbut they are convenient, and
you will need to recognize them in my examples.

Counting Loops

All of the loops we wish to have in our programs can be writteimg thewhi | e anddo- whi | e
constructs we have just seen.

However, most programming languages include another rarghat is typically used focount-
ing loops Java has such a construct, calldd@oop.

Java’'sf or loop looks a bit different, but essentially has all of the sasomponents.

for (int nunmber = 1; nunber <= 10; nunber ++)

{
}

/] do stuff - but omt nunber++ at end

The code in the parentheses consists of 3 parts; it is notjusindition as in f or whi | e
statements. The parts are separated by semicolons. Theditss executed once when we first
reach the or loop. Itis used to declare and initialize the counter. Theoad part is a condition,
just as inwhi | e statements. It is evaluated before we enter the loop (1® at pre-test loop)
and before each subsequent iteration of the loop. It deflmestopping condition for the loop,
comparing the counter to the upper limit. The third part perfs an update. It is executed at the
endof each iteration of thé or loop, just before testing the condition again. It is usedgdate
the counter.

We use the loop above in a straightforward example: caiogjdlhe sum of the first 10 integers.
See Example: Sum1Tol0

Notice how thef or localizes the use of the counter. This has two benefits., Rigmplifies the
body of the loop so that it is somewhat easier to understanddlly. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequethtlgughout the remainder of the
course. For example, we coutdunt downnstead of up:

19

CSC 523 Advanced Programming Summer 2014

See Example: Countdown

This includes not only a count down loop, but a loop whosetistaicondition depends on the
value in a variable instead of an integer constant. We caranogarithmetic expression for the
initialization and any boolean expression for the stopmiogdition.

If we wanted to count by 2’s to add up the even numbers:
See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

bl
2478716 7

If we continue this sum infinitely, the series sums to 1 (cam grove it?).
See Example: GeometricFractionalSum

This example has a straightforward counting loop structbu has more work to do each time
around the loop. Not only do we need to make sure we iteratprtiger number of times, we also
need to update the value of the next term to be added each timed

Random Numbers

It is often useful have computer programs chocsedom numbers Programs that implement
games might need to make decisions randomly. This couldvewvthoosing a random direction
for a character to move, an order for shuffling a deck of caryd®) simulate the roll of a die.

We will see how this works in Java by looking at an example:
See Example: RandomDemo

If we want to use random numbers in our program, we need tarmsRandomobject that we
can ask to generate our random numbers. This first requia¢svilhadd an appropriatarpor t
statement:

i mport java.util.Random
Then in oumai n method, we construct an instance:
Random r andontener at or = new Random() ;

We can then get random values from &mndomobject by calling its methods includingext | nt
andnext Doubl e. See the RandomDemo example code for specifics.

A Random Number in a Game

20

CSC 523 Advanced Programming Summer 2014

We can use this capability in many ways. We will first implertr@simple guessing game. We will
have the computer pick a random number between 1 and 100handér gets to make repeated
guesses until the guess is correct. The program helps owtiog @ “higher” or “lower” response.

See Example: GuessingGame

Here, we just need to choose our random number for the anwwarhave a loop that reads guesses
until the correct number is entered.

A Monte Carlo Method to Compute 7

Not only games make use of random numbers. There is a cladgasftms knows adMonte
Carlo methodghat use random numbers to help compute some result.

We will write programs that use a Monte Carlo method to estntia¢ value ofr.

The algorithm is fairly straightforward. We repeatedly oke(z, y) coordinate pairs, where the
andy values are in the range 0O-ilgthe square with corners é1,0) and(1, 1). For each pair, we
determine if its distance frorf®, 0) is less than or equal to 1. If it is, it means that point liedwmit
the first quardant of a unit circle. Otherwise, it lies outsidf we have a truly random sample
of points, there should be an equal probability that theyeHa®en chosen at any location in our
square domain. The space within the circle occupie$the square of area 1.

So we can approximateby taking the number of random points found to be within thié circle,
dividing that by the total number of points and multiplyiridpy 4!

We can see a simulation of this at:
On the web: http://en.wikipedia.org/wiki/File:PBOK.gif at

Our program:
See Example: MonteCarloPi

Note that we can simply call olRandomnis next Doubl e method to get numbers in the 0.0 to
1.0.

21

