Computer Science 523

Advanced Programming
The College of Saint Rose

Summer 2014

Topic Notes: Inheritance

The notes for this topic are very sparse, instead we wilbfolthe examples from Gaddis Chapter
11.

We have seen classes whose class headers inekidends, i npl enent s, neither, or both. Our
next topic,inheritance, will clarify what is happening in those cases and others.

Read Chapter 11 carefully! Below is just a bit of information @fe to our upcoming use of
interfaces and abstract classes.

Interfaces and Abstract classes

So far, we have seen interfaces and regular classes. Tleeevied between these called@abvstract
class.

The abstractions provided by interfaces and abstractedam® important for the development of
reusable and modular software.

We want to be able to definghat an abstract data type does without committintpdav it does it.

The biggest example we've seen so far &ra ayLi st . As the user of &r r ayLi st , we know
we can create them, add, retrieve, remove, and modify elemrethem, and query information
like their size. All of these are independent of how &re ayLi st is implemented.

This separation of the public interface from the implem#aoteallows programmers to make use
of ArrayLi st s without needing to know how things work on the inside. Itaddlows the
implementers ofAr r ayLi st s to make internal changes without affecting other codeubes it,
so long as the public interface does not change.

Java has language constructs to support the developmelnstodet data types.

e Interfaces describe the public functionality of an abstract data tyfigs includes:

— method signatures
— constants

Ani nt er f ace mayext end another nt er f ace.

We have seen and usedt er f aces primarily in the context of listeners for our Swing
GUI components.



CSC 523 Advanced Programming Summer 2014

e Abstract base classes describe a partial implementation. Abst r act class can define
method bodies for some of the methods required byer f aces iti npl enent s.

This can be useful for:
— methods that can be implemented in terms of other methods

It is possible for a class that extendsarst r act class to override methods defined in the
abst ract class, in case there is a more efficient way to do some of thésgstwhen an
actual implementation is developed.

A frequent use of ambst r act class is to “factor out” implementation of methods that
happen to be the same for multiple implementations of amfade.

e Full implementations (classes that you can instantiatejy ngpl enent i nt er f aces,
and/orext end exactly oneabst r act or fully implemented class.

We will see some more examples using interfaces and abstesstes as we wrap up this course.
You will definitely see more in subsequent courses.



