
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Inheritance

The notes for this topic are very sparse, instead we will follow the examples from Gaddis Chapter
11.

We have seen classes whose class headers includeextends, implements, neither, or both. Our
next topic,inheritance, will clarify what is happening in those cases and others.

Read Chapter 11 carefully! Below is just a bit of information specific to our upcoming use of
interfaces and abstract classes.

Interfaces and Abstract classes
So far, we have seen interfaces and regular classes. There isa level between these called anabstract
class.

The abstractions provided by interfaces and abstract classes are important for the development of
reusable and modular software.

We want to be able to definewhat an abstract data type does without committing tohow it does it.

The biggest example we’ve seen so far is aArrayList. As the user of aArrayList, we know
we can create them, add, retrieve, remove, and modify elements in them, and query information
like their size. All of these are independent of how theArrayList is implemented.

This separation of the public interface from the implementation allows programmers to make use
of ArrayLists without needing to know how things work on the inside. It also allows the
implementers ofArrayLists to make internal changes without affecting other code thatuses it,
so long as the public interface does not change.

Java has language constructs to support the development of abstract data types.

• Interfaces describe the public functionality of an abstract data type.This includes:

– method signatures

– constants

An interface mayextend anotherinterface.

We have seen and usedinterfaces primarily in the context of listeners for our Swing
GUI components.



CSC 523 Advanced Programming Summer 2014

• Abstract base classes describe a partial implementation. Anabstract class can define
method bodies for some of the methods required byinterfaces it implements.

This can be useful for:

– methods that can be implemented in terms of other methods

It is possible for a class that extends anabstract class to override methods defined in the
abstract class, in case there is a more efficient way to do some of these things when an
actual implementation is developed.

A frequent use of anabstract class is to “factor out” implementation of methods that
happen to be the same for multiple implementations of an interface.

• Full implementations (classes that you can instantiate) may implement interfaces,
and/orextend exactly oneabstract or fully implemented class.

We will see some more examples using interfaces and abstractclasses as we wrap up this course.
You will definitely see more in subsequent courses.

2


