
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2014

Topic Notes: Parallel and Distributed Computing

Why Parallel Computing?
Parallel computing sounds simple enough – when one computerisn’t powerful enough to solve
your problem, use more than one.

Before we start to think about how to use parallelism on a computer, let’s think about a parallel
approach to solving a “real-world” problem.

• Taking a census of Albany’s Pine Hills neighborhood.

One person doing this would visit each house, count the people, and ask whatever questions
are supposed to be asked. This person would keep running counts. At the end, this person
has gathered everything.

If there are two people, they can work concurrently. Each visits some houses, and they need
to “report in” along the way or at the end to combine their information. But how to split up
the work?

– Each person could do what the individual was originally doing, but would check to
make sure each house along the way had not yet been counted.

– Each person could start at the town hall, get an address that has not yet been visited,
go visit it, then go back to the town hall to report the result and get another address to
visit. Someone at town hall keeps track of the cumulative totals. This is nice because
neither person will be left without work to do until the wholething is done. This is the
master-slave method of breaking up the work.

– The town could be split up beforehand. Each could get a randomly selected collection
of addresses to visit. Maybe one person takes all houses witheven street numbers
and the other all houses with odd street numbers. Or perhaps one person would take
everything west of Route 9 and the other everything east of Route 9. The choice of how
to divide up the town may have a big effect on the total cost. There could be excessive
travel if one person walks right past a house that has not yet been visited. Also, one
person could finish completely while the other still has a lotof work to do. This is a
domain decomposition approach.

• Grading a stack of exams. Suppose each has several questions. Again, assume two graders
to start.



CSC 507 Software Engineering Spring 2014

– Each person could take half of the stack. Simple enough. But westill have the potential
of one person finishing before the other.

– Each person could take a paper from the “ungraded” stack, grade it, then put it into the
“graded” stack.

– Perhaps it makes more sense to have each person grade half of thequestions instead of
half of the exams, maybe because it would be unfair to have thesame question graded
by different people. Here, we could use variations on the approaches above. Each takes
half the stack, grades his own questions, then they swap stacks.

– Or we form apipeline, where each exam goes from one grader to the next to the finished
pile. Some time is needed to start up the pipeline and drain itout, especially if we add
more graders. These models could be applied to the census example, if different census
takers each went to every house to ask different questions.

– Suppose we also add in a “grade totaler and recorder” person.Does that make any of
the approaches better or worse?

• Adding two1, 000, 000× 1, 000, 000 matrices.

– Each matrix entry in the sum can be computed independently, so we can break this up
any way we like. Could use the master-slave approach, though adomain decomposition
would probably make more sense. Depending on how many processes we have, we
might break it down by individual entries, or maybe by rows orcolumns.

In each of these cases, we have taken what we might normally think of as asequential process,
and taken advantage of the availability ofconcurrent processing to make use of multiple workers
(processing units).

Parallelism adds complexity, so why bother?

• we want to solve the same problem but in a shorter time than possible on one processor –
goal: speedup

• we want to solve larger problems than can currently be solvedat all on a single processor –
goal: scale-up

• some algorithms are more naturally expressed or organized concurrently

• and now: that’s where performance gains come from in modern processors!

2



CSC 507 Software Engineering Spring 2014

Figure used with permission from articleThe Mother of All CPU Charts 2005/2006, Bert Töpelt,
Daniel Schuhmann, Frank V̈olkel, Tom’s Hardware Guide, Nov. 2005,http://www.

tomshardware.com/2005/11/21/the_mother_of_all_cpu_charts_2005/

Image from Intel Core Duo Processor product brief.

3



CSC 507 Software Engineering Spring 2014

Some Basics
Sequential Program: sequence of actions that produce a result (statements + variables), called a
process, task, or thread (of control). The state of the program is determined by the code, data, and
a single program counter.

Concurrent Program: two or more processes that work together. Big difference:multiple program
counters.

To cooperate, the processes needcommunication and synchronization, which can be achieved
throughshared variables, or message passing

Hardware to run concurrent processes

• single processor – logical concurrency (see Operating System course)

• multiprocessor – shared memory

• multicomputer – separate memories

• network – slower communication

Computers may be classified as:

• SISD: single instruction, single data – one processor doingone thing at a time to one piece
of data at a time.

• SIMD: single instruction, multiple data – multiple processors all doing the same thing at
the same time, but operating on different data. Also known as: vector computers. Program
operates in “lock step” on each processor.

• MIMD: multiple instruction, multiple data – multiple processors each doing their own thing.

• SPMD: single program, multiple data – not really a classification of the computer, but of a
model used to program a MIMD computer. Multiple processors run the same program, but
do not operate in lock step. Also known as the “interacting peers” model. This is the model
we will use most in this class.

Some examples:

• SISD: Pre-”multi-core” desktops and laptops.

• SIMD: graphics cards that apply a single operation to an array of data points at the same
time.

4



CSC 507 Software Engineering Spring 2014

NVIDIA image

• MIMD: desktops and laptops with multiprocessors or multi-core chips – each processor can
be executing any instruction and operating on any data.

• MIMD: Cell architecture (Sony PS3) – one general purpose processor and several special-
purpose cores.

http://www.research.ibm.com/cell/cell_chip.html

• MIMD: ASCI Red, Sandia National Labs: 4600+ nodes, each with 2 Intel Pentium II Xeon
processors, first TeraOp machine in 1997.

• MIMD: ASCI White, LLNL: 512 nodes, each with 16 Power3 Nighthawk-2 processors, 12
TeraOps total, was number 1 until 2002.

• Hybrid: Earth Simulator, Yokohama Institute for Earth Sciences, Japan: 640-node NEC
system, each node with 8 vector processors, total of 5,120 CPUs, peak performance of 40
TeraOps

• Hybrid: IBM Blue Gene systems – dense clusters of Cell processors.

Seehttp://www.top500.org/.

Moral: from the desktop to the world’s largest supercomputers, it’s a world of parallel processing
out there!

5



CSC 507 Software Engineering Spring 2014

How to Achieve Parallelism

• We need to determine where concurrency is possible, then break up the work accordingly

• This is easiest if a compiler can do this for you – take your sequential program and extract
the concurrency automatically. This is sometimes possible, especially with fixed-size array
computations.

• If the compiler can’t do it, it is possible to give “hints” to the compiler to tell it what is safe
to parallelize.

• But often, the parallelization must be done explicitly: the programmer has to create the
threads or processes, assign work to them, and manage necessary communication.

Finding Concurrency
We find opportunities for parallelism by looking for parts ofthe sequential program that can be run
in any order.

Before we look at the matrix-matrix multiply, we step back andlook at a simpler example:

1: a = 10;
2: b = a + 5;
3: c = a - 3;
4: b = 7;
5: a = 3;
6: b = c - a;
7: print a, b, c;

Which statements can be run in a different order (or concurrently) but still produce the same an-
swers at the end?

• 1 has to happen before 2 and 3, since they depend ona having a value.
• 2 and 3 can happen in either order.
• 4 has to happen after 2, but it can happen before 3.
• 5 has to happen after 2 and 3, but can happen before 4.
• 6 has to happen after 4 (so 4 doesn’t clobber its value) and after 5 (because it depends on its

value)
• 7 has to happen last.

This idea can be formalized, but it is beyond the scope of our discussion. Bottom line, some
things can be done in different orders or concurrently, and other things need to happen in a specific
(relative) order.

6



CSC 507 Software Engineering Spring 2014

The degree to which we can allow the work of our programs to runconcurrently determines how
much parallelism we can hope to achieve.

Approaches to Parallelism
Automatic parallelism is great, when it’s possible. If we buy a fancy parallelizing compiler, we get
our parallelism for free (at least once we bought the compiler)! It does have limitations, though:

• some potential parallelization opportunities cannot be detected automatically
• bigger complication – this executable cannot run on distributed-memory systems

Parallel programs can be categorized by how the cooperatingprocesses communicate with each
other:

• Shared Memory – some variables are accessible from multiple processes. Reading and
writing these values allow the processes to communicate.

• Message Passing– communication requires explicit messages to be sent from one process
to the other when they need to communicate.

These are functionally equivalent given appropriate operating system support. For example, one
can write message-passing software using shared memory constructs, and one can simulate a
shared memory by replacing accesses to non-local memory with a series of messages that access
or modify the remote memory.

Continue with talk slides...

7


