Computer Science 507

Software Engineering
The College of Saint Rose

Spring 2014

Lab 7: More Software Testing
Due: 6:00 PM, Monday, March 24, 2014

For this week’s lab, we will refine our techniques for unittiteg a bit. Unit testing techniques
might include equivalence testing, state-based testiogndary testing, domain testing, and con-
trol flow-based testing (statement, branch).

You may work alone or in groups of up to size 4 for these exescis

Equivalence Partitioning

Equivalence patrtitioning is bBlackboxtesting technique that minimizes the number of test cases.
Possible inputs are partitioned into equivalence testlagses, and a test case is selected from
each class. We make the assumption that the system behavssmilar way for all members of

an equivalence class.

For example, suppose we have a function or method that centipeinumber of days in a month.
Since we cannot reasonably test all possible month/yeabications, we find equivalence classes
of inputs and sample inputs and outputs for each to perforat wte hoped to be fairly complete
tests. In this example, we will want combinations of monththwdifferent numbers of days,
covering both leap years and non leap years.

One possible set of equivalance classes for this might be:

e Months with 31 days, non-leap years. Example input: Julyl190

Months with 31 days, leap years. Example input: July 1904

Months with 30 days, non-leap years. Example input: Junéd 190

Months with 30 days, leap years. Example input: June 1904

e Months with 28/29 days, non-leap years. Example input: faiyr1901
e Months with 28/29 days, leap years. Example input: Febra@fa

We will not write actual unit tests for such a method, but Hafhg you see how you could.

? Lab Question 1
Look up the rules for determining leap years. Are the eqaeived classes above suffici¢nt
for a general day-of-month method that would work, say, foyears from 1901 to 2099? (2
points)




CSC 507 Software Engineering Spring 2014

Now consider the Triangle program aogul . st rose. edu in/ hone/ cs507/ s14/ | abs/
testing.

? Lab Question 2:
Come up with a set of equivalence classes and sample input&iththoroughly test this
program. (4 points)

? Lab Question 3:
Write a program that implements JUnit tests for the test ceisasyour equivalance classgs
determined in the previous question, and report any errotisa original program that your
tests uncover. (6 points)

Control Flow Adequacy Testing

We now consider avhiteboxtesting mechanism. Note that a method or program can beseptexl
by aflow graph

A segmenis represented by a node (circle) in the flow graph. A segnsestié or more contiguous
statements with no conditionally executed statements.t iBha we start executing a segment,
there is no way to proceed except through the entire segment.

A conditional transfer of control is Branch A branch is represented by an outgoing edge in the
flow graph.

The entry point of a method is represented byeh&y node which is a node no incoming edges.
The exit point of a method is represented by ¢ié& node which has no outbound edges.

For example, the method:

public int funl(int x){
k = 0;
while (x <= 10 && k < 3){
if (x% !'= 0)
k = k + 1;
X =X + 1,
}
if (x < 0){
X 10;
Kk 0;

}

return k;

would be represented by the flow graph:



CSC 507 Software Engineering Spring 2014

where each segment is labelled with a letter.
Given such a flow graph, we would like to form tests that exseraill parts of the flow graph.

The first standard istatement coveragé\ set P of execution paths satisfies the statement coverage
criterion iff for all nodesn in the flow graph, there is at least one patim P s.t. n is on the path

p. We would like to generate test inputs that will cause eaatestent in the program to execute
at least once.

2 Lab Question 4:
Identify a set of values of the inputthat will execute all statementsirunl’s flow graph a
least once. (4 points)

A second standard isranch coverage A set P of execution paths satisfies the branch coverage
criterion iff for all edges: in the flow graph, there is at least one patin P s.t. p contains edge.
Here, we want to generate test inputs to exercise both teatrd false outcomes of each decision.

? Lab Question 5:
Identify a set of values of the input that will execute every branch (edge)fimnl’s flow
graph at least once. (4 points)

A larger example:

public int fun2(int x, int y){
k = 0;
while (x <= 10 && k < 10){
if (x% !'= 0){
k k +v;
k k - 2,

}
X

=X + 1;



CSC 507 Software Engineering Spring 2014

k = x + k;
}
if (x <0){
X =Y,
k = k + x;
}
return k;

? Lab Question 6:
For the above example, develop a flow graph and identify dinsputsx andy such tha
both the statement coverage and branch coverage critersatsfied. (10 points)

Submission

Before 6:00 PM, Monday, March 24, 2014, submit your lab fordgrg. Package up all required
files into an appropriate archive formatt(ar . gz, . zi p, and. 7z are acceptable) and upload a
copy of the using Submission Boxlattt p: / / sb. t er esco. or g under assignment “Testing”.

Grading
This lab will be graded out of 30 points.



