
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2014

Lab 7: More Software Testing
Due: 6:00 PM, Monday, March 24, 2014

For this week’s lab, we will refine our techniques for unit testing a bit. Unit testing techniques
might include equivalence testing, state-based testing, boundary testing, domain testing, and con-
trol flow-based testing (statement, branch).

You may work alone or in groups of up to size 4 for these exercises.

Equivalence Partitioning

Equivalence partitioning is ablackboxtesting technique that minimizes the number of test cases.
Possible inputs are partitioned into equivalence testing classes, and a test case is selected from
each class. We make the assumption that the system behaves ina similar way for all members of
an equivalence class.

For example, suppose we have a function or method that compute the number of days in a month.
Since we cannot reasonably test all possible month/year combinations, we find equivalence classes
of inputs and sample inputs and outputs for each to perform what are hoped to be fairly complete
tests. In this example, we will want combinations of months with different numbers of days,
covering both leap years and non leap years.

One possible set of equivalance classes for this might be:

• Months with 31 days, non-leap years. Example input: July 1901

• Months with 31 days, leap years. Example input: July 1904

• Months with 30 days, non-leap years. Example input: June 1901

• Months with 30 days, leap years. Example input: June 1904

• Months with 28/29 days, non-leap years. Example input: February 1901

• Months with 28/29 days, leap years. Example input: February1904

We will not write actual unit tests for such a method, but hopefully you see how you could.

Lab Question 1:
Look up the rules for determining leap years. Are the equivalence classes above sufficient
for a general day-of-month method that would work, say, for all years from 1901 to 2099? (2
points)



CSC 507 Software Engineering Spring 2014

Now consider the Triangle program onmogul.strose.edu in /home/cs507/s14/labs/
testing.

Lab Question 2:
Come up with a set of equivalence classes and sample inputs that will thoroughly test this
program. (4 points)

Lab Question 3:
Write a program that implements JUnit tests for the test casesfrom your equivalance classes
determined in the previous question, and report any errors in the original program that your
tests uncover. (6 points)

Control Flow Adequacy Testing

We now consider awhiteboxtesting mechanism. Note that a method or program can be represented
by aflow graph.

A segmentis represented by a node (circle) in the flow graph. A segment is one or more contiguous
statements with no conditionally executed statements. That is, if we start executing a segment,
there is no way to proceed except through the entire segment.

A conditional transfer of control is abranch. A branch is represented by an outgoing edge in the
flow graph.

The entry point of a method is represented by theentry node, which is a node no incoming edges.
The exit point of a method is represented by theexit node, which has no outbound edges.

For example, the method:

public int fun1(int x){
k = 0;
while (x <= 10 && k < 3){

if (x%2 != 0)
k = k + 1;

x = x + 1;
}
if (x < 0){

x = 10;
k = 0;

}
return k;

}

would be represented by the flow graph:

2



CSC 507 Software Engineering Spring 2014

where each segment is labelled with a letter.

Given such a flow graph, we would like to form tests that exercise all parts of the flow graph.

The first standard isstatement coverage. A setP of execution paths satisfies the statement coverage
criterion iff for all nodesn in the flow graph, there is at least one pathp in P s.t. n is on the path
p. We would like to generate test inputs that will cause each statement in the program to execute
at least once.

Lab Question 4:
Identify a set of values of the inputx that will execute all statements infun1’s flow graph at
least once. (4 points)

A second standard isbranch coverage. A setP of execution paths satisfies the branch coverage
criterion iff for all edgese in the flow graph, there is at least one pathp in P s.t.p contains edgee.
Here, we want to generate test inputs to exercise both the true and false outcomes of each decision.

Lab Question 5:
Identify a set of values of the inputx that will execute every branch (edge) infun1’s flow
graph at least once. (4 points)

A larger example:

public int fun2(int x, int y){
k = 0;
while (x <= 10 && k < 10){

if (x%2 != 0){
k = k + y;
k = k - 2;

}
x = x + 1;

3



CSC 507 Software Engineering Spring 2014

k = x + k;
}
if (x < 0){

x = y;
k = k + x;

}
return k;

}

Lab Question 6:
For the above example, develop a flow graph and identify pairsof inputsx andy such that
both the statement coverage and branch coverage criteria are satisfied. (10 points)

Submission

Before 6:00 PM, Monday, March 24, 2014, submit your lab for grading. Package up all required
files into an appropriate archive format (.tar.gz, .zip, and.7z are acceptable) and upload a
copy of the using Submission Box athttp://sb.teresco.org under assignment “Testing”.

Grading

This lab will be graded out of 30 points.

4


