
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2014

Lab 6: Unit Testing with JUnit
Due: 6:00 PM, Monday, March 17, 2014

This week, we will work with the basics of the JUnit unit testing system.

You may work alone or in groups of up to size 4 for these exercises.

Unit Testing

Unit testing is a standard technique for many software development projects. The idea is to develop
test cases along with the actual code to make sure the code notonly works correctly when first
written (at least as far as these tests are concerned) but also that it continues to work (again, at least
in so much as it still passes the unit tests) when it is later modified.

There are many techniques, including libraries and frameworks, to support unit testing in nearly
any production programming language. As the majority of youare most likely familiar with Java,
we will experiment with unit testing in that language. If youare not a Java programmer, be sure
to team up with someone who does have some Java experience. Fortunately, the techniques are
similar with other languages and unit testing frameworks.

JUnit Introduction and Setup

JUnit is a framework to manage test cases for Java classes. The idea is that for a Java class you
wish to test, you write an additional class to perform the unit tests.

JUnit is often used with the Eclipse IDE, but can be used on itsown or with other IDEs as well.
You are welcome to complete this lab with any IDE you wish, butthe instructions will assume you
are running Java from the command line onmogul.strose.edu. If you wish to use JUnit in a
different environment, you will need to set it up as appropriate.

To set up the Java environment on mogul to include the JUnit jar files. There is a script you can
run to do this:

. /home/cs507/junit/junit.bashrc

Note: in the above, the period and space are part of the command and are important!

You can either enter this each time you log into mogul and wishto use JUnit, or you can add it to
the end of the.bashrc file in your home directory.

Please copy the filesSuperSimple.java andSuperSimpleTest.java from/home/cs507/junit
into a directory for this lab. These are an incredibly simpleJava class and its corresponding JUnit



CSC 507 Software Engineering Spring 2014

test class. Take a look at these files and make sure everythingin them makes sense (there’s not
much).

To compile these, the following commands should work:

javac SuperSimple.java
javac SuperSimpleTest.java

You can then run the unit test with the following:

java org.junit.runner.JUnitCore SuperSimpleTest

Lab Question 1:
What output do you get when you run the “SuperSimple” unit test? (1 point)

Now, change theisItSimple method so it no longer “works” (i.e., it doesn’t returntrue) and
recompile and rerun the test.

Lab Question 2:
What output do you get now? (1 point)

This example uses one kind of JUnit assertion, but there are many more.

Lab Question 3:
Write a new unit test class that creates a JavaArrayList, adds two items to the array list
with theadd method. It should then have assertions to verify that the twoitems are in the
appropriate locations and that thesize method returns 2. Include this test class and the
output when you run the test in your submission. (5 points)

These kinds of tests work for many simple situations.

More Substantial Tests

Thinking about thatArrayList example, you will quickly realize that many tests will require
some “set up” before and/or “tear down” after each test case.JUnit provides this capability with the
@Before and@After annotations. The test method annotated with@Before will run before
each test method (i.e., those annotated with@Test) and the@After method will run after each
(whether the test succeeds or fails).

Note that you will need an additionalimport for each of these:

import org.junit.After;
import org.junit.Before;

2



CSC 507 Software Engineering Spring 2014

Lab Question 4:
Make a copy of yourArrayList test from the previous section and modify it so that the
construction of theArrayList and the addition of the two items are in a method annotated
with @Before (note that you will likely now need to declare yourArrayList as an in-
stance variable), and separate out yourArrayList tests into 3 separate tests: one to check
that the first element is correct, a second to check that the second element is correct, and a
third to check that thesize method returns 2. Include this test class and the output when
you run the test in your submission. (6 points)

Lab Question 5:
Develop a Java class that implements a non-trivial data structure and/or algorithm – nothing
more complicated than you’d see in a typical undergraduate data structures course – and a
JUnit test class that tests the important features. Possibilities include a sorting algorithm, a
list or tree data structure, or a class that performs some mathematical calculations that you
can check easily. You must use at least two JUnit assertion methods that were not used in the
previous examples or lab questions. In your submission, include the Java code for both the
implementation and JUnit test class. (12 points)

Submission

Before 6:00 PM, Monday, March 17, 2014, submit your lab for grading. Package up all required
files into an appropriate archive format (.tar.gz, .zip, and.7z are acceptable) and upload a
copy of the using Submission Box athttp://sb.teresco.org under assignment “JUnit”.

Grading

This lab will be graded out of 25 points.

3


