Computer Science 507

Software Engineering
The College of Saint Rose

Spring 2013

Lab 6: Unit Testing with JUnit
Due: 6:00 PM, Monday, March 25, 2013

This week, we will work with the basics of the JUnit unit testisystem.

You may work alone or in groups of 2 or 3 for these exercises.

JUnit Introduction and Setup

JUnit is a framework to manage test cases for Java classesid&a is that for a Java class you
wish to test, you write an additional class to perform the tests.

JUnit is often used with the Eclipse IDE, but can be used oovits or with other IDEs as well.
You are welcome to complete this lab with any IDE you wish,thetinstructions will assume you
are running Java from the command lineragul . st r ose. edu. If you wish to use JUnit in a
different environment, you will need to set it up as appraigi

To set up the Java environment on mogul to include the JUnftlgs. There is a script you can
run to do this:

/ home/ ¢s507/junit/junit.bashrc

Note: in the above, the period and space are part of the cotharahare important!

You can either enter this each time you log into mogul and wesise JUnit, or you can add it to
the end of the bashr c file in your home directory.

Please copy thefilé&Super Si npl e. j ava andSuper Si npl eTest . j avafrom/ hone/ ¢cs507/j uni t
into a directory for this lab. These are an incredibly simjdea class and its corresponding JUnit

test class. Take a look at these files and make sure everyththgm makes sense (there’s not
much).

To compile these, since we are using a bit of a non-standaedidstallation on mogul, we need to
add the- 1. 5 flag to get a version of Java compatible with this version afi@Urhese command
should work:

javac -1.5 SuperSinple.java
javac -1.5 SuperSi npl eTest. java

You can then run the unit test with the following:

CSC 507 Software Engineering Spring 2013

java org.junit.runner.JUnitCore SuperSi npl eTest

Question 1. What output do you get when you run the “SuperSimple” unit€$tpoint)

Now, change the sl t Si npl e method so it no longer “works'’i ., it doesn’t returrt r ue) and
recompile and rerun the test.

Question 2: What output do you get now? (1 point)
This example uses one kind of JUnit assertion, but there argymore.

Question 3: Write a new unit test class that creates a JavaayLi st , adds two items to the
array list with theadd method. It should then have assertions to verify that theiteras are in

the appropriate locations and that 8ieze method returns 2. Include this test class and the output
when you run the test in your submission. (5 points)

These kinds of tests work for many simple situations.

More Substantial Tests

Thinking about tha#\r r ayLi st example, you will quickly realize that many tests will recgi
some “set up” before and/or “tear down” after each test cildait provides this capability with the
@Bef or e and @\f t er annotations. The test method annotated v@Bef or e will run before
each test methodi(e., those annotated wit@est) and the@Af t er method will run after each
(whether the test succeeds or fails).

Note that you will need an additionahpor t for each of these:

inmport org.junit.After;
import org.junit. Before;

Question 4: Make a copy of youAr r ayLi st test from the previous section and modify it so that
the construction of thér r ayLi st and the addition of the two items are in a method annotated
with @Bef or e (note that you will likely now need to declare yo#rrr ayLi st as an instance
variable), and separate out yolrrr ayLi st tests into 3 separate tests: one to check that the first
element is correct, a second to check that the second elesnemtrect, and a third to check that
thesi ze method returns 2. Include this test class and the output wharrun the test in your
submission. (5 points)

Question 5: Develop a Java class that implements a non-trivial datatstrel and/or algorithm,
and a JUnit test class that tests the important featuressitildges include a sorting algorithm,
a list or tree data structure, or a class that performs sontkeemmatical calculations that you can
check easily. Submit your Java code for both the implememtaind JUnit test class. (8 points)

Submission and Grading

To submit the assignment, send your source files and respémsbe questions above teres-
coj @strose.edu by 6:00 PM, Monday, March 25, 2013. Please include a meamiisgbject line
(something like “CS507 Lab 6 Submission”).

2

CSC 507 Software Engineering Spring 2013

This lab will be graded out of 20 points.

