
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2013

Lab 6: Unit Testing with JUnit
Due: 6:00 PM, Monday, March 25, 2013

This week, we will work with the basics of the JUnit unit testing system.

You may work alone or in groups of 2 or 3 for these exercises.

JUnit Introduction and Setup

JUnit is a framework to manage test cases for Java classes. The idea is that for a Java class you
wish to test, you write an additional class to perform the unit tests.

JUnit is often used with the Eclipse IDE, but can be used on itsown or with other IDEs as well.
You are welcome to complete this lab with any IDE you wish, butthe instructions will assume you
are running Java from the command line onmogul.strose.edu. If you wish to use JUnit in a
different environment, you will need to set it up as appropriate.

To set up the Java environment on mogul to include the JUnit jar files. There is a script you can
run to do this:

. /home/cs507/junit/junit.bashrc

Note: in the above, the period and space are part of the command and are important!

You can either enter this each time you log into mogul and wishto use JUnit, or you can add it to
the end of the.bashrc file in your home directory.

Please copy the filesSuperSimple.java andSuperSimpleTest.java from/home/cs507/junit
into a directory for this lab. These are an incredibly simpleJava class and its corresponding JUnit
test class. Take a look at these files and make sure everythingin them makes sense (there’s not
much).

To compile these, since we are using a bit of a non-standard Java installation on mogul, we need to
add the-1.5 flag to get a version of Java compatible with this version of JUnit. These command
should work:

javac -1.5 SuperSimple.java
javac -1.5 SuperSimpleTest.java

You can then run the unit test with the following:



CSC 507 Software Engineering Spring 2013

java org.junit.runner.JUnitCore SuperSimpleTest

Question 1: What output do you get when you run the “SuperSimple” unit test? (1 point)

Now, change theisItSimple method so it no longer “works” (i.e., it doesn’t returntrue) and
recompile and rerun the test.

Question 2: What output do you get now? (1 point)

This example uses one kind of JUnit assertion, but there are many more.

Question 3: Write a new unit test class that creates a JavaArrayList, adds two items to the
array list with theadd method. It should then have assertions to verify that the twoitems are in
the appropriate locations and that thesize method returns 2. Include this test class and the output
when you run the test in your submission. (5 points)

These kinds of tests work for many simple situations.

More Substantial Tests

Thinking about thatArrayList example, you will quickly realize that many tests will require
some “set up” before and/or “tear down” after each test case.JUnit provides this capability with the
@Before and@After annotations. The test method annotated with@Before will run before
each test method (i.e., those annotated with@Test) and the@After method will run after each
(whether the test succeeds or fails).

Note that you will need an additionalimport for each of these:

import org.junit.After;
import org.junit.Before;

Question 4: Make a copy of yourArrayList test from the previous section and modify it so that
the construction of theArrayList and the addition of the two items are in a method annotated
with @Before (note that you will likely now need to declare yourArrayList as an instance
variable), and separate out yourArrayList tests into 3 separate tests: one to check that the first
element is correct, a second to check that the second elementis correct, and a third to check that
thesize method returns 2. Include this test class and the output whenyou run the test in your
submission. (5 points)

Question 5: Develop a Java class that implements a non-trivial data structure and/or algorithm,
and a JUnit test class that tests the important features. Possibilities include a sorting algorithm,
a list or tree data structure, or a class that performs some mathematical calculations that you can
check easily. Submit your Java code for both the implementation and JUnit test class. (8 points)

Submission and Grading

To submit the assignment, send your source files and responses to the questions above toteres-
coj@strose.edu by 6:00 PM, Monday, March 25, 2013. Please include a meaningful subject line
(something like “CS507 Lab 6 Submission”).

2



CSC 507 Software Engineering Spring 2013

This lab will be graded out of 20 points.

3


