
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose

Fall 2015

Lab 6: Sorting and Comparators
Due: 6:00 PM, Wednesday, October 21, 2015

This week’s lab focuses on sorting. You will take the next step toward our upcoming empirical

analysis of sorting algorithms in a practice program, then get an introduction (or reintroduction)

the power of Java’s Comparator interface as it applies to writing a generalized sorting method.

You will extend the functionality of an existing class using inheritance, you will implement a

simple sorting procedure within this extension, and you will learn about Comparators, which

provide a more flexible mechanism for ordering objects than the Comparables we have seen in

class.

You may work alone or in a group of two or three on this lab. Of course, collaboration with your

partner is unrestricted. You may discuss the lab with your classmates and give and receive some

help, but your submission must be your own work (or that of you and your teammates, if you

choose to form a group).

Getting Set Up

To get your BlueJ environment set up for this week’s lab assignment, start BlueJ and choose “New

Project” from the “Project” menu. Navigate to your folder for this course and choose the name

“Lab6” (no spaces) for the project.

Create a document where you will record your answers to the lecture assignment and lab questions.

If you use plain text, call it “lab6.txt”. If it’s a Word document, you can call it whatever you’d

like, but when you submit, be sure you convert it to a PDF document “lab6.pdf” before you

submit it.

Lecture Assignment Questions

We will usually discuss these questions at the start of class on the lab due date, so no credit can be

earned for late submissions of lecture assignment questions.

LA Question 1:

Bailey Exercise 6.13, p. 146. (2 points)

LA Question 2:

Bailey Exercise 6.18, p. 146. (4 points)

Practice Programs



CSC 501 Data Structures and Algorithm Analysis Fall 2015

For this week’s practice program(s), you will be taking another step toward an empirical analysis

study of sorting algorithms.

Your program should be able to gather timings for sorting algorithms operating on arrays of int.

It should have options to set the array size, the number of trials (to improve timing accuracy), the

ability to generate initial data that is sorted, nearly sorted, completely random, and reverse sorted.

Design your program to make it easy to implement a variety of sorting algorithms. Include the

ability to count basic operations (number of comparisons and/or number of swaps) as well as to

generate timings. You will need the ability to generate and report tabular data to show how your

sorting algorithms perform on different sizes and distributions of data.

For this week, you should implement just three “naive” sorting algorithms in your program(s):

• bubble sort

• selection sort

• insertion sort

Tips, Tricks, Precautions, and Suggestions

• Use command line parameters rather than prompts, as this makes it much easier when run-

ning many (likely hundreds or thousands) of trials to generate timing results. args[] has

what you need! If you don’t know how to run with command-line parameters inside your

IDE, run your Java program at the command line. That’s what you’ll want to do when gen-

erating timing results anyway.

• Have one big program rather than lots of little ones. This will help you avoid repeated code

as you implement each of the sorting algorithms within the same framework.

• Be careful that you don’t reuse an array of values for multiple runs, since all but the first

could end up having already-sorted data as input.

• A simple tabular format of output will help you manage the creation of tables and/or graphs

that you’ll need later. Something like

10000 bubble random .034693

might indicate for an input size of 10,000, using a bubble sort on random input took .034693

seconds.

Programming Assignment

We will do the laboratory at the end of Chapter 6 in Bailey.

Please note the following clarifications, modifications, and explanations relating to the lab proce-

dure outlined in the text:

2



CSC 501 Data Structures and Algorithm Analysis Fall 2015

• In step 1, you are asked to create an extension of structure.Vector called MyVec-

tor. Since we are using the generic version of the structure package, the class header for

MyVector should look something like this:

public class MyVector<T> extends structure5.Vector<T>

Keep in mind that as an extension of structure5.Vector, methods of MyVector will

have access to instance variables and methods declared as protected in the struct-

ure5.Vector implementation. Make good use of this fact!

Important Note: The elementData array in structure5.Vector is declared as

private rather than protected for type safety reasons. This means, unfortunately, that

MyVector will not be able to access the array directly. Fortunately, Vector has mutator

and accessor methods that are (almost) as good as direct access to the array.

Another Important Note: You do not need to copy or rewrite Vector.java! When you

extend the existing Vector code, it will inherit all of the constructors and methods. You’re

just adding one method.

• In step 2, you are to write a sort method. The structure of the code will be very similar

to what you have seen in our class and text examples, but you will need to modify it to use

Comparators instead of base types or Comparables and to operate on the contents of

your instance of MyVector.

• Be sure to test your sort method in MyVector thoroughly before going on to part 3 of the

lab assignment.

• For part 3 of the lab procedure, write two applications. They should each work on a different

data file and each should perform more than one “interesting” sort process. Both will use the

same MyVector class, but each application will call its own class for encapsulating the data

objects you are working with, and a number of Comparators to sort the data in different

ways. You should have a total of at least 5 unique Comparators in your submission.

You may choose from the data files I have provided in the “labs/comparators” direc-

tory in the class shared area. See the README file there for more information. You may also

use some other data that you find interesting.

Question 1:

Answer Thought Question 1 on p. 147-148 of Bailey. (3 points)

Question 2:

Answer Thought Question 2 on p. 148 of Bailey. (3 points)

Submitting

3



CSC 501 Data Structures and Algorithm Analysis Fall 2015

Before 6:00 PM, Wednesday, October 21, 2015, submit your lab for grading. There are two things

you need to do to complete the submission: (i) Copy your file with the answers to the lecture

assignment and lab questions into your project directory. Be sure to use the correct file name. If

you prepared your answers in Word, export to a PDF file and submit that. (ii) Email a copy of

your lab (a .7z or .zip file containing your project directory) to terescoj@strose.edu. Please use

a meaningful subject line such as “Joe Student Lab6 Submission”.

Grading

This assignment is worth 60 points, which are distributed as follows:

Feature Value Score

LA Question 1 (6.13) 2

LA Question 2 (6.18) 4

General sorting algorithm test framework 5

Java code for specific sorting algorithms 12

MyVector correctness 12

Comparators correctness 5

MyVector and Comparators design and style 5

MyVector and Comparators documentation 6

Sorting applications 3

Question 1: Thought Question 1 3

Question 2: Thought Question 2 3

Total 60

4


