Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2014

Topic Notes: Sorting

Searching and sorting are very common operations and areng®rtant examples to demonstrate
complexity analysis.

Sear ching

Before we deal with sorting, we briefly consider searching.

Linear Search

As you certainly know, a search is the method we use to logaiestance of a data item with a
particular property within a collection of data items. Thethod used for searching depends on
the organization of the data in which we are searching.

To start, we will assume we are searching for a particulareval an array of nt .

Thelinear search is very straightforward. We simply compare the element evpking for with
successive elements of the array until we either find it orawirof elements.

public static int search (int[] elts, int findElt) {
int index = 0;
while (index < elts.length) {
if (findElt == elts[index])
return index;
I ndex++;

}
return -1; [/ Ddn't find elt.

Some properties of this linear search for an array of size

e On average, this will requirg compares if element is in the array.
e It requiresn compares if element not in array (worst case).

e Both areO(n).

Note that we can very easily modify the search method to warény array ofCbj ect s:

CSC 501 Data Structures and Algorithm Analysis Fall 2014

public static int search (Object[] elts, int findElt) {
int index = 0;
while (index < elts.length) {
if (findElt.equals(elts[index]))
return index;
I ndex++;

}
return -1; [/ Didn't find elt.

We can get away with this because@tlj ect s are required to have agual s method, and this
is the only comparison needed for a linear search.

Binary search

The linear search is the best we can do if we have no informatimut the ordering of the data in
our array. However, if we havardered data, we can uselanary search.

Here, we start by considering the middle element in the array

o If the middle element is the search element, then we're done.

o If the middle element smaller than search element, then werkhe element, if it is in our
array, can be found by a binary search of the bigger elements.

¢ If the middle element larger than search element, then wehlidpaay search of the smaller
elements.

See Example:
/ home/ cs501/ exanpl es/ Bi nSear ch

Notice that we had to write a protected helper method to dedlaech recursively, since a user of
this search shouldn’t need to specify a start and end in thethod call. From their point of view,
they should need only specify the array and the element todagdd.

This is a classic example ofdavide and conquer approach.
Each recursive call will lead to at most two compares.

What is maximum number of recursive calls?

e Each time we make a recursive call, we divide size of arrayetedarched in half.
e How many times can we divide a number in half before there ig brelement left?

e If you start with2* then divide ta2*—1, 2+=2 2+=3 20 =1: dividek times by 2.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

e In general can divide by 2 at mostlog n times to get down to 1. In this course, we will
write log n and understand that we meka, n.

There are at modlogn) + 1 invocations of the method and therefore at mst((logn) + 1)
comparisons. This i®(logn) comparisons.

We could obtain this same result by setting up and solvingarrence, or by applying the master
theorem.

Conpar abl e Qbj ect s

If we are going to deal witlbj ect s for a binary search, we need a way to compare them. We
can write a method that compares @pj ect to another, like theeonpar eTo() method of
St ri ngs. However, there is noonpar eTo method inCbj ect .

Fortunately, Java provides an interface that does exduly theConpar abl e interface. Any
object that implementSonpar abl e will have aconpar eTo method, so if we write our search
(and next up, sorting) routines to operate@mpar abl es, we will be all set.

See Example:
/ hormre/ ¢cs501/ exanpl es/ Bi nSear ch

Note the weird syntax. In this case, we don’t have a genepie fgr the class, we have it just for
these methods.

The<T ext ends Conpar abl e> means that any class can be used for the type of the array and
search element, as long as the array was declared and aiedtas some type that implements
theConpar abl e interface.

Several standard Java classes implemer@tmpar abl e interface, including things likent eger
andDoubl e.

So we can write methods that expect objects that exBamgpar abl e, and be guaranteed that an
appropriateconpar eTo method will be provided.

Sorting

Computers spend a lot of tinserting data. Some have claimed that anywhere fri)m % of all
computation time is spent doing sorting. We already sawdbeing data makes searching much
more efficient. Now we consider how to approach sorting.

Suppose our goal is to take a shuffled deck of cards and totsoscending order. We’'ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficuket’s consider arrays of items to be sorted.
The text starts with arrays of ints for simplicity, but we MdbnsiderConpar abl es, as we saw
in our generic binary search.

An extremely inefficient (both in time and space) but cormealy to sort would be to construct

CSC 501 Data Structures and Algorithm Analysis Fall 2014

all possible permutations of the array (there ar®f them) and then look at each one in a linear
time search to see if all pairs of adjacent objects are initite prder (each of these searches is
potentiallyO(n)). We can do better.

We will build sorting procedures out of two main operations:

e compare two elements

e swap two elements

We know how to compare base types, and we saw the id€&oopar abl es for comparing
objects that provide aonpar eTo() method.

A swap is very easy to write in Java. If we have an array of soase ltype, we can write:

public static void swap(int data[], int i, int j) {

int tenp = datali];
data[i] = data[j];
data[j] = tenp;

}

If we have an array ofbj ect references, we can easily just change the types of the anchtha
temp variable.

public static void swap(Cbject data[], int i, int j) {

Object tenp = data[i];
data[i] = data[j];
data[j] = tenp;

}

Or, using generics:

public static <T> void swap(T[] data, int a, int b) {

T tenp = data[a];
dat a[a] dat a[b] ;
dat a[b] t enp;

}

In this case, there is no great benefit to the generic verdidmdon’t really care what the types
of the elements of the array actually are. We are not trediem as anything more specific than
oj ect s.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

However, if you need to write a swap method inside a genedssglyou will need to use the
generic type.

Bubble Sort

We begin with a very intuitive sort. We just go through ouragriooking at pairs of values and
swapping them if they are out of order.

It takesn — 1 “bubble-ups”, each of which can stop sooner than the lastesive know we bubble
up one more value to its correct position in each iteratioent¢é the nambubble sort.

bubbl e _sort (A[0..n-1]) {
for (i = 0to n-2)
for (j=0 to n-2-i)
it (Alj+1] < Alj]) swap A[j] and A[j +1]

The size parameter tg, the size of the input array.

The basic operation is either the comparison or the swagiaribe innermost loop. The comparison
happens every time, while the swap only happens when negedsseeorder a pair of adjacent

elements. Remember that a swap involves three assignmemits) would be more expensive

than the individual comparisons.

The best, average, and worst case for the number of comparis@ll the same. But for swaps,
it differs. Best case, the array is already sorted and we netdake any swaps. Worst case,
every comparison requires a swap. For an average case, we meed more information about
the likelihood of a swap being needed to do any exact analysis

So we proceed by counting comparisons, and the summatibalaal give us a the worst case for
the number of swaps.

:2[(71—2—2')—0“]
_ n::m— 1- 1)
- (_21)” € O(n?)

So we dod(n?) comparisons. We swap, potentially, after each one of tleeserse case behavior
of ©(n?) swaps.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Remember that a swap involves three assignments, which veeuldore expensive than the indi-
vidual comparisons.

The text has code for an iterative bubble sorti ot s. You can easily change this to a sort of
Conpar abl esthe same way we changed our binary search exampld frdratoConpar abl es.

Think about how you’d write a recursive bubble sort.

Selection Sort

Our first improvement on the bubble sort is based on the oasenvthat one pass of the bubble
sort gets us closer to the answer by moving the largest wets@lement into its final position.
Other elements are moved “closer” to their final positiort,dlwe can really say for sure after a
single pass is that we have positioned one more element.

So why bother with all of those intermediate swaps? We carsgerch through the unsorted part
of the array, remembering the index of (and hence, the vdjube largest element we've seen so
far, and when we get to the end, we swap the element in thedagtgn with the largest element
we found. This is theelection sort.

selection_sort (A 0..n-1]) {
for (i = 0to n-2)
mn =i
for (j=i+1 to n-1)
if (Alj] <Almn]) mn=j;
swap A[i] and Al m n]

The number of comparisons is our basic operation here.

Here, we do the same number of comparisons, but at mest € ©(n) swaps.

The text has an iterative selection sortiamt s. Let’s look at a recursive selection sort method on
objects that implemer@npar abl e.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

See Example:
/ homre/ cs501/ exanpl es/ Sorti ngConpari sons/ Sel ecti onSort

Insertion Sort

Consider applying selection sort to an already-sorted aéystill need to make atb(n?) com-
parisons (but no swaps). This is unfortunate. There aretyplaincircumstances where sorting
routines could be called most frequently on already-sastatearly-sorted data.

Our next procedure does better in those situations.

The idea is that we build up the sorted portion of the arrag,itgm at a time, by inserting the next
unsorted element into its final location. Everything elseascaded up to make room. This is the
insertion sort.

insertion_sort(A[0..n-1]) {
for (i=0 to n-1) {
v = Ali]
j =i-1
while (j >= 0 and A[j] > v) {
ALj+1] = AL
J__
}
Alj+1] = vV

This is an in-place sort and is stable.
Our basic operation for this algorithm is the comparisoneyfsin the while loop.

We do have differences in worst, average, and best caseibeHavhe worst case, the while loop
always executes as many times as possible. This occurs ecarekement needs to go all the way
at the start of the sorted portion of the array — exactly winenstarting array is in reverse sorted
order.

The worst case number of comparisons:

[y

n—1 1—1 n—1
—1
Coonn() — 1= =" o
1

I
o

%

(2

Ly

In the best case, the inner loop needs to do just one compadstermining that the element is
already in its correct position. This happens when the @lgoris presented with already-sorted
input. Here, the number of comparisons:

n—1
Chest(n) =Y 1=n—1€ O(n)
=1

CSC 501 Data Structures and Algorithm Analysis Fall 2014

This behavior is unusual — after all, how often do we atteropsdrt an already-sorted array?
However, we come close in some very important cases. If we haarly-sorted data, we have
nearly this same performance.

A careful analysis of the average case would result in:

n?

Coualn) = = € O(n?)

Of the simple sorting algorithms (bubble, selection, itiea), insertion sort is considered the best
option in general.

A Java implementation:

See Example:
/ homre/ cs501/ exanpl es/ Sorti ngConpari sons/ I nsertionSort

The complexity here i®(n?) again. The callto ecl nsSort (n- 1, el t s) takes< n*(n—1)/2
comparisons.

Because ounhi | e loop might quit early, an insertion sort only uses half as yneamparisons
(on average) than selection sort. Thus, it's usually twicéaat (but still©(n?)).

Insertion sort also has much better behavior on sorted otyagarted data. Each insertion might
stop after just one comparison, leading() behavior in this best case circumstance.

Merge sort

Each procedure we have considered so far is an “in-placé”Bbey require only(1) extra space
for temporary storage.

Next, we consider a procedure that usds) extra space in the form of a second array.

It's based on the idea that if you're given two sorted arrggs,can merge them into a third @(n)
time. Each comparison will lead to one more item being plactalits final location, limiting the
number of comparisons to— 1.

In the general case, however, this doesn’t do anything foetiarts to sort the original array. We
have completely unsorted data, not two sorted arrays toenerg

But we can create two arrays to merge if we split the array ify Batt each half independently,
and then merge them together (hence the need for the @ktrgspace).

If we keep doing this recursively, we can reduce the “sort bfalhe array” problem to the trivial
cases.

This approach, theerge sort, was invented by John von Neumann in 1945.
How many splits will it take™® (log n)

Then we will haved (log n) merge steps, each of which involves sub-arrays totalingetsn, so
each merge (which will bé independent merges infoelement arrays) step h&gn) operations.

8

CSC 501 Data Structures and Algorithm Analysis Fall 2014

This suggests an overall complexity®fn logn).

Let’s look at pseudocode for this:

nmergesort (A[0..n-1])
if n>1
copy first half of array Ainto a tenp array B
copy second half of array Ainto a tenp array C
nmer gesort (B)
nmer gesort (O
nerge(B and Cinto A)

where the merge operation is:

merge(B[O0..p-1], CO0..q9.1], AO..(p*tg-1)])
while B and C have nore el enents
choose smaller of itens at the start of B or C
renove the itemfromB or C
add it to the end of A
copy remaining itens of Bor Cinto A

Let's do a bit more formal analysis of mergesort. To keepghisimple, we will assume that
n =2k,

Our basic operation will be the number of comparisons thatiie be made.

The recurrence for the number of comparisons for a mergegarproblem of size: = 2% is

C(n) =2C(n/2) + Cperge(n) forn>1,C(1) =0.

The best, worst, and average cases depend on how long wetheentain while loop in the merge
operation before one of the arrays is empty (as the remaelgmgents are then taken from the
other array with no comparions needed). Let’s consider thesticase, where the merge will take
n—1 comparisons (one array becomes empty only when the otherdiagle element remaining).
This leads to the recurrence:

Cuworst(n) = 2Cuorst(n/2) + n—1 forn > 1, Cuerst(1) = 0.

The master theorem gives us tlia},,;(n) € O(nlogn).

The text has some example code for this. Again, you can eesilyert it from its current func-
tionality, sortingi nt s to sortConpar abl es.

See Example:
/ homre/ ¢s501/ exanpl es/ Sorti ngConpari sons/ Mer geSor t

9

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Note that this implementation uses a clever way to allow ocapwnly half of the array into the
temp array at each step.

Quicksort

Another very popular divide and conquer sorting algoritlsnthiequicksort. This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, sassth half, and then merged (where
all work is in the merge), quicksort works in the oppositeesrd

That is, quicksort splits the array (which takes lots of warito parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part,fardputs them back together (trivially).

It proceeds by picking @ivot element, moving all elements to the correct side of the pirast
sulting in the pivot being in its final location, and two sublplems remaining that can be solved
recursively.

See Example:
/ home/ ¢s501/ exanpl es/ Sorti ngConpari sons/ Qui ckSort

In this case the leftmost element is chosen as the pivot.tibiits correct position and put all
elements on their correct side of the pivot.

If partiti on worksthenqui ckSort clearly works.

Note: we always make a recursive call on a smaller array {isutasy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than meayebecause the pivot will not always
wind up in the middle of the array (in the worst case, the pisdie largest or smallest element).

Thepartiti on method is clearly©(n) because every comparison resultd ef t orri ght
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middletladnalysis results i®(n logn),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quickebri\es like a selection sort, giving
O(n?).

A careful analysis can show that quicksortd$n logn) in the average case (under reasonable
assumptions on distribution of elements of array).

Psuedocode for a quicksort:
qui cksort (A[l..r]) // we would start with I =0, r=n-1
ifl <

s = partition(A[l..r]) // s is pivot’s location
qui cksort (Al Il..s-1])

10

CSC 501 Data Structures and Algorithm Analysis Fall 2014

qui cksort (Al s+1..r])

partition(A[l..r])
p=AI] [// leftnost is pivot

i l; j = r+1

do

do i++ until i =71 || Ai] >=p
doj-- until j =1 || Aj] <=p

swap(A[i], Alj])
until i>5
swap(Ali],Aj]) // undo | ast
swap(AlI'],A[j]) // swap in pivot
return j

Note: we always make a recursive call on a smaller array {lsueasy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than msagéebecause the pivot will not always
wind up in the middle of the array (in the worst case, the pisthe largest or smallest element).

Again, the basic operation will be the comparisons that d&ee in the partition.

Thepartiti on method is clearly©(n) because every comparison resultd ef t orri ght
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle.

This would lead to a number of comparisons according to tberrence:

Chest(n) = 2Chest(n/2) +n forn > 1, Chpese(1) = 0.

By solving the recurrence or applying the Master Theorem, ne thatCj..(n) € O(nlogn),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksbraves like a selection sort. This
occurs with already-sorted input or reverse-sorted indat.analyze this case, think of the first
pass through the fulk-element array. The first elemer 0] , is chosen as the pivot. The left-
to-right inner loop will terminate after one comparisom(gA[0] is the smallest element). The
right-to-left inner loop will perform comparisons wity n- 1] , Al n- 2], ... all the way down to
Al 0] since we need to “move” the pivot item to its own position. f$a+ 1 comparisons for the
partition step. In the process, the problem size is decddagé, so there will be: comparisons in
the next stepp —1 in the third, and so on. We stop after processing the two-eteiwase (requiring
3 comparisons), so the total comparisons is given by:

Cloomat (1) = (R + 1)+ 104+ 43 = <”+1)2<”+2> —3e0(m)

11

CSC 501 Data Structures and Algorithm Analysis Fall 2014

A careful analysis can show that quicksortd$n logn) in the average case (under reasonable
assumptions on distribution of elements of array). We caaged by assuming that the partition
can occur at any position with the same probabih};gy (This leads to a more complex recurrence:

—_

1«
Cavg(n) = - [(n 4+ 1) 4+ Cavg(s) + Capg(n — 1 —5)] forn > 1, Chyg(0) = 0, Chyy(1) = 0.

S

I
o

We will not solve this in detail, but it works out to:

Cavg(n) = 2nlnn ~ 1.38nlog, n € ©(nlogn).

Clearly, the efficiency of quicksort depends on the seleaf@good pivot. Improving our chances
to select a good pivot will ensure quicker progress. One wagotthis is to consider three can-
didates (often the leftmost, rightmost, and middle eles)eahd take the median of these three as
the pivot value.

Other improvements include switching to a simpl@xx?)) sort once the subproblems get below
a certain threshold size, and implementing quicksortiiezly rather than recursively.

Quicksort is often the method of choice for general purposeng with large data sizes.

12

