
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2014

Topic Notes: Sorting

Searching and sorting are very common operations and are also important examples to demonstrate
complexity analysis.

Searching
Before we deal with sorting, we briefly consider searching.

Linear Search

As you certainly know, a search is the method we use to locate an instance of a data item with a
particular property within a collection of data items. The method used for searching depends on
the organization of the data in which we are searching.

To start, we will assume we are searching for a particular value in an array ofint.

The linear search is very straightforward. We simply compare the element we’re looking for with
successive elements of the array until we either find it or runout of elements.

public static int search (int[] elts, int findElt) {
int index = 0;
while (index < elts.length) {

if (findElt == elts[index])
return index;

index++;
}
return -1; // Didn’t find elt.

}

Some properties of this linear search for an array of sizen:

• On average, this will requiren
2

compares if element is in the array.

• It requiresn compares if element not in array (worst case).

• Both areO(n).

Note that we can very easily modify the search method to work on any array ofObjects:

CSC 501 Data Structures and Algorithm Analysis Fall 2014

public static int search (Object[] elts, int findElt) {
int index = 0;
while (index < elts.length) {

if (findElt.equals(elts[index]))
return index;

index++;
}
return -1; // Didn’t find elt.

}

We can get away with this because allObjects are required to have anequals method, and this
is the only comparison needed for a linear search.

Binary search

The linear search is the best we can do if we have no information about the ordering of the data in
our array. However, if we haveordered data, we can use abinary search.

Here, we start by considering the middle element in the array:

• If the middle element is the search element, then we’re done.

• If the middle element smaller than search element, then we know the element, if it is in our
array, can be found by a binary search of the bigger elements.

• If the middle element larger than search element, then we do abinary search of the smaller
elements.

See Example:
/home/cs501/examples/BinSearch

Notice that we had to write a protected helper method to do thesearch recursively, since a user of
this search shouldn’t need to specify a start and end in theirmethod call. From their point of view,
they should need only specify the array and the element to be located.

This is a classic example of adivide and conquer approach.

Each recursive call will lead to at most two compares.

What is maximum number of recursive calls?

• Each time we make a recursive call, we divide size of array to be searched in half.

• How many times can we divide a number in half before there is only 1 element left?

• If you start with2k then divide to2k−1, 2k−2, 2k−3, ...,20 = 1; dividek times by 2.

2

CSC 501 Data Structures and Algorithm Analysis Fall 2014

• In general can dividen by 2 at mostlog n times to get down to 1. In this course, we will
write log n and understand that we meanlog2 n.

There are at most(log n) + 1 invocations of the method and therefore at most2 · ((log n) + 1)
comparisons. This isΘ(log n) comparisons.

We could obtain this same result by setting up and solving a recurrence, or by applying the master
theorem.

Comparable Objects

If we are going to deal withObjects for a binary search, we need a way to compare them. We
can write a method that compares anObject to another, like thecompareTo() method of
Strings. However, there is nocompareTo method inObject.

Fortunately, Java provides an interface that does exactly this, theComparable interface. Any
object that implementsComparable will have acompareTo method, so if we write our search
(and next up, sorting) routines to operate onComparables, we will be all set.

See Example:
/home/cs501/examples/BinSearch

Note the weird syntax. In this case, we don’t have a generic type for the class, we have it just for
these methods.

The<T extends Comparable>means that any class can be used for the type of the array and
search element, as long as the array was declared and constructed as some type that implements
theComparable interface.

Several standard Java classes implement theComparable interface, including things likeInteger
andDouble.

So we can write methods that expect objects that extendComparable, and be guaranteed that an
appropriatecompareTo method will be provided.

Sorting
Computers spend a lot of timesorting data. Some have claimed that anywhere from1

4
to 1

3
of all

computation time is spent doing sorting. We already saw thatsorting data makes searching much
more efficient. Now we consider how to approach sorting.

Suppose our goal is to take a shuffled deck of cards and to sort it in ascending order. We’ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficult. Let’s consider arrays of items to be sorted.
The text starts with arrays of ints for simplicity, but we will considerComparables, as we saw
in our generic binary search.

An extremely inefficient (both in time and space) but correctway to sort would be to construct

3

CSC 501 Data Structures and Algorithm Analysis Fall 2014

all possible permutations of the array (there aren! of them) and then look at each one in a linear
time search to see if all pairs of adjacent objects are in the right order (each of these searches is
potentiallyO(n)). We can do better.

We will build sorting procedures out of two main operations:

• compare two elements

• swap two elements

We know how to compare base types, and we saw the idea ofComparables for comparing
objects that provide acompareTo() method.

A swap is very easy to write in Java. If we have an array of some base type, we can write:

public static void swap(int data[], int i, int j) {

int temp = data[i];
data[i] = data[j];
data[j] = temp;

}

If we have an array ofObject references, we can easily just change the types of the array and the
temp variable.

public static void swap(Object data[], int i, int j) {

Object temp = data[i];
data[i] = data[j];
data[j] = temp;

}

Or, using generics:

public static <T> void swap(T[] data, int a, int b) {

T temp = data[a];
data[a] = data[b];
data[b] = temp;

}

In this case, there is no great benefit to the generic version.We don’t really care what the types
of the elements of the array actually are. We are not treatingthem as anything more specific than
Objects.

4

CSC 501 Data Structures and Algorithm Analysis Fall 2014

However, if you need to write a swap method inside a generic class, you will need to use the
generic type.

Bubble Sort

We begin with a very intuitive sort. We just go through our array, looking at pairs of values and
swapping them if they are out of order.

It takesn− 1 “bubble-ups”, each of which can stop sooner than the last, since we know we bubble
up one more value to its correct position in each iteration. Hence the namebubble sort.

bubble_sort(A[0..n-1]) {
for (i = 0 to n-2)

for (j=0 to n-2-i)
if (A[j+1] < A[j]) swap A[j] and A[j+1]

}

The size parameter isn, the size of the input array.

The basic operation is either the comparison or the swap inside the innermost loop. The comparison
happens every time, while the swap only happens when necessary to reorder a pair of adjacent
elements. Remember that a swap involves three assignments, which would be more expensive
than the individual comparisons.

The best, average, and worst case for the number of comparisons is all the same. But for swaps,
it differs. Best case, the array is already sorted and we need not make any swaps. Worst case,
every comparison requires a swap. For an average case, we would need more information about
the likelihood of a swap being needed to do any exact analysis.

So we proceed by counting comparisons, and the summation will also give us a the worst case for
the number of swaps.

C(n) =
n−2∑

i=0

n−2−i∑

j=0

1

=
n−2∑

i=0

[(n− 2− i)− 0 + 1]

=
n−2∑

i=0

(n− 1− i)

=
(n− 1)n

2
∈ Θ(n2).

So we doΘ(n2) comparisons. We swap, potentially, after each one of these,a worse case behavior
of Θ(n2) swaps.

5

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Remember that a swap involves three assignments, which wouldbe more expensive than the indi-
vidual comparisons.

The text has code for an iterative bubble sort ofints. You can easily change this to a sort of
Comparables the same way we changed our binary search example fromints toComparables.

Think about how you’d write a recursive bubble sort.

Selection Sort

Our first improvement on the bubble sort is based on the observation that one pass of the bubble
sort gets us closer to the answer by moving the largest unsorted element into its final position.
Other elements are moved “closer” to their final position, but all we can really say for sure after a
single pass is that we have positioned one more element.

So why bother with all of those intermediate swaps? We can just search through the unsorted part
of the array, remembering the index of (and hence, the value of) the largest element we’ve seen so
far, and when we get to the end, we swap the element in the last position with the largest element
we found. This is theselection sort.

selection_sort(A[0..n-1]) {
for (i = 0 to n-2)

min = i
for (j=i+1 to n-1)
if (A[j] < A[min]) min = j;

swap A[i] and A[min]
}

The number of comparisons is our basic operation here.

C(n) =
n−2∑

i=0

n−2∑

j=i+1

1

=
n−2∑

i=0

[(n− 1)− (i+ 1) + 1]

=
n−2∑

i=0

(n− 1− i)

=
(n− 1)n

2
∈ Θ(n2).

Here, we do the same number of comparisons, but at mostn− 1 ∈ Θ(n) swaps.

The text has an iterative selection sort onints. Let’s look at a recursive selection sort method on
objects that implementComparable.

6

CSC 501 Data Structures and Algorithm Analysis Fall 2014

See Example:
/home/cs501/examples/SortingComparisons/SelectionSort

Insertion Sort

Consider applying selection sort to an already-sorted array. We still need to make allΘ(n2) com-
parisons (but no swaps). This is unfortunate. There are plenty of circumstances where sorting
routines could be called most frequently on already-sortedor nearly-sorted data.

Our next procedure does better in those situations.

The idea is that we build up the sorted portion of the array, one item at a time, by inserting the next
unsorted element into its final location. Everything else iscascaded up to make room. This is the
insertion sort.

insertion_sort(A[0..n-1]) {
for (i=0 to n-1) {

v = A[i]
j = i-1
while (j >= 0 and A[j] > v) {
A[j+1] = A[j]
j--

}
A[j+1] = v

This is an in-place sort and is stable.

Our basic operation for this algorithm is the comparison of keys in the while loop.

We do have differences in worst, average, and best case behavior. In the worst case, the while loop
always executes as many times as possible. This occurs when each element needs to go all the way
at the start of the sorted portion of the array – exactly when the starting array is in reverse sorted
order.

The worst case number of comparisons:

Cworst(n) =
n−1∑

i=1

i−1∑

j=0

1 =
n−1∑

i=1

i =
n(n− 1)

2
∈ Θ(n2)

In the best case, the inner loop needs to do just one comparison, determining that the element is
already in its correct position. This happens when the algorithm is presented with already-sorted
input. Here, the number of comparisons:

Cbest(n) =
n−1∑

i=1

1 = n− 1 ∈ Θ(n)

7

CSC 501 Data Structures and Algorithm Analysis Fall 2014

This behavior is unusual – after all, how often do we attempt to sort an already-sorted array?
However, we come close in some very important cases. If we have nearly-sorted data, we have
nearly this same performance.

A careful analysis of the average case would result in:

Cavg(n) ≈
n2

4
∈ Θ(n2)

Of the simple sorting algorithms (bubble, selection, insertion), insertion sort is considered the best
option in general.

A Java implementation:

See Example:
/home/cs501/examples/SortingComparisons/InsertionSort

The complexity here isΘ(n2) again. The call torecInsSort(n-1,elts) takes≤ n∗(n−1)/2
comparisons.

Because ourwhile loop might quit early, an insertion sort only uses half as many comparisons
(on average) than selection sort. Thus, it’s usually twice as fast (but stillΘ(n2)).

Insertion sort also has much better behavior on sorted or nearly-sorted data. Each insertion might
stop after just one comparison, leading toΘ(n) behavior in this best case circumstance.

Merge sort

Each procedure we have considered so far is an “in-place” sort. They require onlyΘ(1) extra space
for temporary storage.

Next, we consider a procedure that usesΘ(n) extra space in the form of a second array.

It’s based on the idea that if you’re given two sorted arrays,you can merge them into a third inΘ(n)
time. Each comparison will lead to one more item being placedinto its final location, limiting the
number of comparisons ton− 1.

In the general case, however, this doesn’t do anything for our efforts to sort the original array. We
have completely unsorted data, not two sorted arrays to merge.

But we can create two arrays to merge if we split the array in half, sort each half independently,
and then merge them together (hence the need for the extraΘ(n) space).

If we keep doing this recursively, we can reduce the “sort half of the array” problem to the trivial
cases.

This approach, themerge sort, was invented by John von Neumann in 1945.

How many splits will it take?Θ(log n)

Then we will haveΘ(log n) merge steps, each of which involves sub-arrays totaling in size ton, so
each merge (which will bek independent merges inton

k
-element arrays) step hasΘ(n) operations.

8

CSC 501 Data Structures and Algorithm Analysis Fall 2014

This suggests an overall complexity ofΘ(n log n).

Let’s look at pseudocode for this:

mergesort(A[0..n-1])
if n>1

copy first half of array A into a temp array B
copy second half of array A into a temp array C
mergesort(B)
mergesort(C)
merge(B and C into A)

where the merge operation is:

merge(B[0..p-1], C[0..q.1], A[0..(p+q-1)])
while B and C have more elements

choose smaller of items at the start of B or C
remove the item from B or C
add it to the end of A

copy remaining items of B or C into A

Let’s do a bit more formal analysis of mergesort. To keep things simple, we will assume that
n = 2k.

Our basic operation will be the number of comparisons that need to be made.

The recurrence for the number of comparisons for a mergesortof a problem of sizen = 2k is

C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0.

The best, worst, and average cases depend on how long we are inthe main while loop in the merge
operation before one of the arrays is empty (as the remainingelements are then taken from the
other array with no comparions needed). Let’s consider the worst case, where the merge will take
n−1 comparisons (one array becomes empty only when the other hasa single element remaining).
This leads to the recurrence:

Cworst(n) = 2Cworst(n/2) + n− 1 for n > 1, Cworst(1) = 0.

The master theorem gives us thatCworst(n) ∈ Θ(n log n).

The text has some example code for this. Again, you can easilyconvert it from its current func-
tionality, sortingints to sortComparables.

See Example:
/home/cs501/examples/SortingComparisons/MergeSort

9

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Note that this implementation uses a clever way to allow copying only half of the array into the
temp array at each step.

Quicksort

Another very popular divide and conquer sorting algorithm is thequicksort. This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, sortedeach half, and then merged (where
all work is in the merge), quicksort works in the opposite order.

That is, quicksort splits the array (which takes lots of work) into parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part, and then puts them back together (trivially).

It proceeds by picking apivot element, moving all elements to the correct side of the pivot, re-
sulting in the pivot being in its final location, and two subproblems remaining that can be solved
recursively.

See Example:
/home/cs501/examples/SortingComparisons/QuickSort

In this case the leftmost element is chosen as the pivot. Put it into its correct position and put all
elements on their correct side of the pivot.

If partition works thenquickSort clearly works.

Note: we always make a recursive call on a smaller array (but it’s easy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than mergesort because the pivot will not always
wind up in the middle of the array (in the worst case, the pivotis the largest or smallest element).

Thepartition method is clearlyΘ(n) because every comparison results inleft or right
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle andthe analysis results inΘ(n log n),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksort behaves like a selection sort, giving
Θ(n2).

A careful analysis can show that quicksort isΘ(n log n) in the average case (under reasonable
assumptions on distribution of elements of array).

Psuedocode for a quicksort:

quicksort(A[l..r]) // we would start with l=0, r=n-1
if l < r

s = partition(A[l..r]) // s is pivot’s location
quicksort(A[l..s-1])

10

CSC 501 Data Structures and Algorithm Analysis Fall 2014

quicksort(A[s+1..r])

partition(A[l..r])
p = A[l] // leftmost is pivot
i = l; j = r+1
do

do i++ until i = r || A[i] >= p
do j-- until j = l || A[j] <= p
swap(A[i],A[j])

until i>=j
swap(A[i],A[j]) // undo last
swap(A[l],A[j]) // swap in pivot
return j

Note: we always make a recursive call on a smaller array (but it’s easy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than mergesort because the pivot will not always
wind up in the middle of the array (in the worst case, the pivotis the largest or smallest element).

Again, the basic operation will be the comparisons that takeplace in the partition.

Thepartition method is clearlyΘ(n) because every comparison results inleft or right
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle.

This would lead to a number of comparisons according to the recurrence:

Cbest(n) = 2Cbest(n/2) + n for n > 1, Cbest(1) = 0.

By solving the recurrence or applying the Master Theorem, we find thatCbest(n) ∈ Θ(n log n),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksort behaves like a selection sort. This
occurs with already-sorted input or reverse-sorted input.To analyze this case, think of the first
pass through the fulln-element array. The first element,A[0], is chosen as the pivot. The left-
to-right inner loop will terminate after one comparison (sinceA[0] is the smallest element). The
right-to-left inner loop will perform comparisons withA[n-1], A[n-2], ... all the way down to
A[0] since we need to “move” the pivot item to its own position. That’s n+1 comparisons for the
partition step. In the process, the problem size is decreased by 1, so there will ben comparisons in
the next step,n−1 in the third, and so on. We stop after processing the two-element case (requiring
3 comparisons), so the total comparisons is given by:

Cworst(n) = (n+ 1) + n+ · · ·+ 3 =
(n+ 1)(n+ 2)

2
− 3 ∈ Θ(n2)

11

CSC 501 Data Structures and Algorithm Analysis Fall 2014

A careful analysis can show that quicksort isΘ(n log n) in the average case (under reasonable
assumptions on distribution of elements of array). We can proceed by assuming that the partition
can occur at any position with the same probability (1

n
). This leads to a more complex recurrence:

Cavg(n) =
1

n

n−1∑

s=0

[(n+ 1) + Cavg(s) + Cavg(n− 1− s)] for n > 1, Cavg(0) = 0, Cavg(1) = 0.

We will not solve this in detail, but it works out to:

Cavg(n) ≈ 2n lnn ≈ 1.38n log2 n ∈ Θ(n log n).

Clearly, the efficiency of quicksort depends on the selectionof a good pivot. Improving our chances
to select a good pivot will ensure quicker progress. One way to do this is to consider three can-
didates (often the leftmost, rightmost, and middle elements) and take the median of these three as
the pivot value.

Other improvements include switching to a simpler (Θ(n2)) sort once the subproblems get below
a certain threshold size, and implementing quicksort iteratively rather than recursively.

Quicksort is often the method of choice for general purpose sorting with large data sizes.

12

