
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2014

Topic Notes: Ordered Structures

We have considered two special-purpose data types, stacks and queues, that are essentiallyre-
stricted versions of the more general structures we considered earlier.

While we implemented our stacks and queues using arrays and vectors and linked lists, the in-
terfaces to these linear structures limited access to the internal representation, and allowed us to
choose an appropriate way to orient the data within the structures to make the operations in the
restricted interface as efficient as possible.

Now, we consider structures that have another restriction placed on them: that their contents are
maintained in some order.

Theseordered structures allow us to search among their contents efficiently, or to process the
contents in a particular order.

These can be implemented using the structures we know so well, but again we will want to restrict
the interface so as to guarantee that the ordered nature of the structures is not violated.

Ordering objects implies that we have a mechanism for comparing them.

Recall that when we discussed sorting algorithms, we said that one approach to allow our code
to be more generally applicable is to require that the elements of the arrays had to implement
Comparable. Comparable is a Java interface that requires a method:

public int compareTo(T item);

In one assignment, we extended this idea to the more generalComparator concept, where we
could compare objects of any type and according to any criteria, by supplying an appropriate
compare method in aComparator that could compare two given objects.

Let’s consider how theComparable interface andComparator objects might be of use in
defining objects that can be placed into an ordered structure. In particular, let’s begin by consider-
ing aComparable Association.

It is an extension of theAssociation class from way back that also implementsComparable,
therefore adding acompareTo method. Recall thatAssociations are key/value pairs. For a
ComparableAssociation, we require that the key beComparable.

See Structure Source:
/home/cs501/src/structure5/ComparableAssociation.java

TheseComparableAssociations may be compared and placed in an ordered structure.



CSC 501 Data Structures and Algorithm Analysis Fall 2014

We will implement two ordered structures, one based on aVector and the other on a linked list.

In structure, each of these implements an interface calledOrderedStructure.

See Structure Source:
/home/cs501/src/structure5/OrderedStructure.java

It’s an empty interface! What good is this? All it does it defines a type. But that means we can
use that type in places where we want to require one of our ordered structures, but do not want to
commit to a particular implementation (as when we wanted aList but did not want to commit to
a specific one).

But since it does extend theStucture interface, it requires our basic set of operations.

See Structure Source:
/home/cs501/src/structure5/Structure.java

But in this case, we (as implementers) will enforce the restriction on implementations that the
contents will be stored in order.

Ordered Vectors
We’ll first consider anOrderedVector of Comparable objects.

As we did with the linear structures, we don’t extend the underlying data type, but ratherencapsu-
late it.

So use a regularVector as the underlying representation, but werestrict the interface to enforce
that our structure remain ordered.

See Structure Source:
/home/cs501/src/structure5/OrderedVector.java

What are the complexities of the methods here?

• contains can make use of a binary search! Well, that was the whole point, wasn’t it? But
this is good! We now have a structure with anΘ(log n) contains method.

• add now requires a search for the proper position at which to add.We use anΘ(log n)
binary search. Plus there is a worst-caseΘ(n) cost to move everything up beyond the add
position.

• remove can use a binary search as well, againΘ(log n) to find the position of the item to
be removed, followed by a worst-caseΘ(n) cost to shift down the contents of theVector.

An important question here is why did we not extendVector instead of having one protected
inside the class? Our answer is that the public interface to the Vector class is not restrictive
enough! Since theOrderedVector would alsobe a Vector with all of its public methods,
users could modify the structure with general-purposeVector operators and break the ordering!

2



CSC 501 Data Structures and Algorithm Analysis Fall 2014

Again, we need torestrict the functionality to ensure that our structure functions correctly and that
it can be made to perform its public functionality more efficiently.

Ordered Lists
Which of our list implementations make sense for our list-basedOrderedStructure?

Consider the operations allowed. We need only search from thebeginning and add/remove values
at arbitrary positions. The doubly-linked and circular lists are no better at these than a singly-linked
list, so it makes sense to go with the simplest one that works.

We could implement this with a protectedSinglyLinkedList, just as we did with the pro-
tectedVector inside of ourOrderedVector.

But think about how we’d have to do foradd. We would need to create an iterator over the list to
compare the object we’re adding with each object in the list.Then we’d know where to add it. But
adding it would require a new search all the way from the beginning! That’s inefficient.

So we want to break open theSinglyLinkedList and use some of its internals without using
the whole thing. Essentially ourOrderedList will implement its own list by using the same
Node structure that is used inSinglyLinkedList. But we’ll manage the details differently in
OrderedList. Fortunately, we have a very restrictive interface, so there are not many methods
to worry about.

So we’ll have a counted singly-linked list that keeps itselfordered.

See Structure Source:
/home/cs501/src/structure5/OrderedList.java

Unfortunately, our important operations are stillΘ(n). Our linked list does not allow direct access
to arbitrary elements, forcing us to settle for a linear search when finding the correct position for
an object being added or removed or searched.

Adding an optional Comparartor

An additional feature of this implementation is that it allows use of aComparator for alternate
orderings of our data. In fact, it does in a way that allows it to work without modification if you
wish to orderComparables bt their “natural” ordering, but will allowing alternate orderings
using aComparator.

The changes needed to support this:

1. Add an instance variable to store the comparator. The veryodd syntax for the type parameter
here means that we can specify aComparator for anything thatE is – any of the classes it
extends or interfaces it implements. So long as it can compare objects of typeE.

2. Add a new constructor that takes an appropriateComparator as its parameter.

3. Modify the default constructor to create and use aNaturalComparator – a simple

3



CSC 501 Data Structures and Algorithm Analysis Fall 2014

Comparator that just uses the requiredcompareTo method of ourComparable ob-
jects.

4. Change thecompareTo calls tocompare calls.

Our structure is actually a bit overrestrictive. We requirethat the elements we add extendComparable,
even though we’ll only use theircompareTo method when using theNaturalComparator.

4


