Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2014

Topic Notes: Introduction and Overview

Welcome to Data Structures and Algorithm Analysis!

Why Take Data Structures and Algorithms?

In this course, you will become a more sophisticated programand problem solver, as you
learn about designing correct and efficient algorithms atd sgtructures for use in your programs.
Along the way, you will:

e hone your problem solving skills,

gain experience in programming in general, Java in pagicul

learn how to implement algorithms and data structures ia,Jav

learn how to evaluate and visualize data structures anditdgcs,

learn how to understand (and prove) some properties of ttatztigres and algorithms,

learn how to consider the relative merits of different stwes and algorithms, and

learn how to design large programs (in an object-orientey) wa that it is easy to modify
them

| think of this as two courses in one - you become a more expedgrammer with new data
structures and algorithms, and you become a better compdimtist by analyzing those data
structures and algorithms so you can design and use theneeffycand appropriately.

We will do very little with graphics and animations, instedmbosing to focus on the relatively sim-
ple textual interface often used by advanced programmersthBualgorithms and data structures
may be used in (and are often essential to) those graphmgigms. Your additional programming
experience will allow you to understand and make use of thensive base of reusable code, Java
and otherwise, that is available to today’s programmersnekiough we will use only a limited
subset of those tools here.

What isan Algorithm?
A possible definition: a step-by-step method for solving@bjpgm.



CSC 501 Data Structures and Algorithm Analysis Fall 2014

An algorithm does not need to be something we run on a comjutiee modern sense. The notion
of an algorithm is much older than that. But it does need to h@adl and unambiguous set of
instructions.

The good news: if we can express it as a computer prograngatisy to be pretty formal and
unambiguous.

Example: Computing the Max of 3 Numbers

Let’s start by looking at a couple of examples and use theneterthine some of the important
properties of algorithms.

Our first example is finding the maximum among three given rensib
Any of us could write a program in our favorite language to lais:t
int max(int a, int b, int c) {

if (a>Db) {

if (a>c) return ga;
el se return c;

}

el se {
if (b >c) return b;
el se return c;

}

}

The algorithm implemented by this function or method hgsuts (the three numbers) and one
output(the largest of those numbers).

The algorithm is definegreciselyand isdeterministic

This notion of determinism is a key feature: if we presentdlgorithm multiple times with the
same inputs, it follows the same steps, and obtains the satoeroe.

A non-deterministigorocedure could produce different outcomes on differemcetions, even
with the same inputs.

Code is naturally deterministic — how can we introduce notemenism?

It's also important that our algorithm will eventually teimate. In this case, it clearly does. In
fact, there are no loops, so we know the code will executeshgufew steps. An algorithm is
supposed to solve a problem, and it's not much of a solutiginridns forever. This property is
calledfiniteness

Finally, our algorithm gives the right answer. This very onjant propertycorrectnessis not
always easy to achieve.

It's even harder t@erify correctness. How can you tell if you algorithm works for abpible valid
inputs? An important tool here: formptoofs



CSC 501 Data Structures and Algorithm Analysis Fall 2014

A good algorithm is alsgeneral It can be applied to all sets of possible input. If we did reoec
about generality, we could produce an algorithm that iseqaibit simpler. Consider this one:

int max(int a, int b) {
if (a>10 & b < 10) return a;
}

This gives the right answer when it gives any answer. But isaa# compute any answer for many
perfectly valid inputs.

We will also be concerned with thefficiencyin both time (number of instructions) and space
(amount of memory needed).

Why Study Algorithms?
The study of algorithms has botheoreticalandpractical importance.

Computer science is about problem solving and these proldesrsolved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and ctmress of these solutions.

Practically, a study of algorithms provides an arsenal dimgjues and approaches to apply to the
problems you will encounter. And you will gain experienceigeing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both thelesignandanalysisof algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algoritare important, but it is also impor-
tant to know if there are other possible algorithms that migghbetter. We would like to establish
theoreticallower bound=n the time and space needed by any algorithm to solve a pnolalied
to be able to prove that a given algorithnojgtimal

Sample Problems

Here are some examples of the kinds of problems you will Iéasolve. In some cases, we will
consider algorithms at a high level. In others, we will cdesithem more carefully and analyze
their efficiency. And in some cases, we will implement them.

1. Find items in a large collection with particular featu@esrhaps the 10 largest).

2. Find the shortest path from Albany to Albuquerque on th@nal highway system (and do
it efficiently).

3. Develop a game decision tree to allow a computer playea frame such as chess.

4. Design and implement a scientific calculator.

3



CSC 501 Data Structures and Algorithm Analysis Fall 2014

5. Design and implement a simulator that lets you study triffiv in a city or airport.

6. Design and implement a pattern matching system to findtepkar sequence of nuceleotides
in the sequenced DNA of a given organism.

7. Design and implement a simulation for some physical phemon (e.g., fluid flow).

8. Analyze solutions of problems such as the Towers of Hanoi.
Some of the approaches we’ll consider include:

e Brute force

e Divide and conquer

e Decrease and conquer

e Transform and conquer

e Greedy approach

e Dynamic programming

e Backtracking and branch and bound
e Space and time tradeoffs

The study of algorithms often extends to the study of advamizga structures. Some should be
familiar; others likely will be new to you:

e lists (arrays, linked, strings)

stacks/queues

priority queues

graph structures

tree structures

sets and dictionaries

Example: Greatest Common Denominator

We first consider a very simple but surprisingly interesaifgprthmic example: computing a great-
est common denominator (or divisor) (GCD).

Recall the definition of the GCD:



CSC 501 Data Structures and Algorithm Analysis Fall 2014

The gcd ofm andn is the largest integer that divides bothandn evenly.
For example: gcd(60,24) = 12, gcd(17,13) = 1, gcd(60,0) = 60.

One common approach to finding the gcdtisclid’s Algorithm specified in the third century B.C.
by Euclid of Alexandria.

Euclid’s algorithm is based on repeated application of tineadty:

gcd(n,n) = gcd@, m modn)

until the second number becomes 0, which makes the probiead.tr
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

More precisely, application of Euclid’s Algorithm followtkese steps:

Step 1 If n =0, returnm and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value of the remainder to

Step 3 Assign the value of to m and the value of ton. Go to Step 1.
And a pseudocode description:

/1 mn are non-negative, not both zero
Euclid(m n) {

while (n !'=0) {
r = mnod n
m=n
n=r

}

return m

}

It may not be obvious at first that this algorithm must terrténa

How can we convince ourselves that it does?

¢ the second number.) gets smaller with each iteration and can never become imegat

¢ so the second number in the pair eventually becomes 0, ahwlbint the algorithm stops.

Euclid’s Algorithm is just one way to compute a GCD. Let’s |lamtka few others:

Consecutive integer checking algorithm: check all of thegets, in decreasing order, starting
with the smaller of the two input numbers, for common diviisjb

5



CSC 501 Data Structures and Algorithm Analysis Fall 2014

Step 1 Assign the value of mifim,n} tot

Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is O, returhand stop; otherwise, go to Step 4
Step 4 Decrease by 1 and go to Step 2

This algorithm will work. It always stops because every tianeund, Step 4 is performed, which
decreases It will eventually become=1, which is always a common divisor.

Let’s run through the computation of gcd(60,24):

Step 1 Sett=24

Step 2 Divide m=60 byt=24 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=23, proceed to Step 2

Step 2 Divide m=60 byt=23 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=22, proceed to Step 2

Step 2 Divide m=60 byt=22 and check the remainder. Itis not 0, so we proceed to Step 4
Step 4 Sett=21, proceed to Step 2

Step 2 Divide m=60 byt=21 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=20, proceed to Step 2

Step 2 Divide m=60 byt=20 and check the remainder. Itis 0, so we proceed to Step 3
Step 3 Divide n=24 byt=20 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=19, proceed to Step 2

Step 2 Divide m=60 byt=19 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=18, proceed to Step 2

Step 2 Divide m=60 byt=18 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=17, proceed to Step 2

Step 2 Divide m=60 byt=17 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=16, proceed to Step 2

Step 2 Divide m=60 byt=16 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=15, proceed to Step 2



CSC 501 Data Structures and Algorithm Analysis Fall 2014

Step 2 Divide m=60 byt=15 and check the remainder. Itis 0, so we proceed to Step 3
Step 3 Divide n=24 byt=15 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=14, proceed to Step 2

Step 2 Divide m=60 byt=14 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=13, proceed to Step 2

Step 2 Divide m=60 byt=13 and check the remainder. It is not 0, so we proceed to Step 4
Step 4 Sett=12, proceed to Step 2

Step 2 Divide m=60 byt=12 and check the remainder. Itis 0, so we proceed to Step 3
Step 3 Divide n=24 byt=12 and check the remainder. It is 0, so we retwrh?2 as our gcd

However, it does not work if one of our input numbers is O (kmliEuclid’s Algorithm). This is a
good example of why we need to be careful to specify valid ispoi our algorithms.

Another method is one you probably learned in around 7thegrad

Step 1 Find the prime factorization of
Step 2 Find the prime factorization ot
Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and ret@s gcd{n,n)
So for our example to compute gcd(60,24):

Step 1 Compute prime factorization of 60: 2, 2, 3,5
Step 2 Compute prime factorization of 24: 2,2, 2, 3
Step 3 Common prime factors: 2, 2, 3

Step 4 Multiply to get our answer: 12

While this took only a total of 4 steps, the first two steps argegcomplex. Even the third is
not completely obvious. The description lacks an importdrdracteristic of a good algorithm:
precision

We could not easily write a program for this without doing mavork. Once we work through
these, it seems that this is going to be a more complicatedadet

We can accomplish the prime factorization in a number of wa&ys will consider one known as
thesieve of Eratosthenes



CSC 501 Data Structures and Algorithm Analysis Fall 2014

Si eve(n) {
for p=2ton{ // set array values to their index
Alp] =p
}
for p =2to floor(sqrt(n)) {
if Alp] '=0{ //p hasn’t been previously elimnated fromthe |ist
] = p*p

while j <= n {
A[j] =0 //mark elenent as elim nated
j =1 +tp
}
}

/'l nonzero entries of A are the prines

Given this procedure to determine the primes up to a givameyale can use those as our candidate
prime factors in steps 1 and 2 of the middle school gcd algaritNote that each prime may be
used multiple times.

So in this case, the seemingly simple middle school pro@ends up being quite complex, since
we need to fill in the vague portions.



