Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2014

Topic Notes: Graphs

When does a tree stop being a tree? When it has a cycle!

Just like a list is really just a boring case of a tree (eveeybas just one child), a tree is really just
a boring case of a graph (no cycles).

Definition and Terminology

A graph(is a collection oihodesor vertices in a setl/, joined byedgesn a setFE. Vertices have
labels. Edges can also have labels (which often repregeighty. Such a graph would be called
aweighted graph

The graph structure represents relationships (the edges)@the objects stored (the vertices).

For a tree, we might think of the tree nodes as vertices andslddpeled “parent” and “child” to
represent nodes that have those relationships.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

e Two vertices aradjacentif there exists an edge between them.
e.g., Ais adjacentto B, G is adjacent to E, but A is not adjat®ft

e A pathis a sequence of adjacent vertices.
e.g., A-B-C-F-B is a path.

e A simple pathhas no vertices repeated (except that the first and last ménelsame).
e.g., A-B-C-E is a simple path.

e A simple path is a&ycleif the first and last vertex in the path are same.
e.g., B-C-F-Bis a cycle.

e Directed graphdor digraphg differ from undirected graphsn that each edge is given a
direction.

e Thedegreeof a vertex is the number of edges incident on that vertex.
e.g., the degree of C is 4, the degree of D is 1, the degree 00H is
For a directed graph, we have more speafit-degreeandin-degree

e Two verticesu andv areconnectedf a simple path exists between them.

e A subgraphS is aconnected componeifitthere exists a path between every pair of vertices
inS.

e.g.,{A,B,C,D,E,F,G and{H} are the connected components of our example.

e A graph isacyclicif it contains no cycles.

e A graph iscompletaf every pair of vertices is connected by an edge.

A Sample Graph Problem
Many problems in computer science can be converted to gnagiitgms.

Consider, for example, an application in which we need to pldriving route from Williamstown
to Boston.

We might represent Williamstown and all other towns in Mabssetts as vertices; we might
represent roads as edges between the vertices.

If we labeled the edges with the mileage between the vertmscthe path planning problem then
becomes a problem of finding the shortest (weighted) patheiigtaph between Williamstown and
Boston.

Here’s a subset of that data that we’ll use later:

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Lowell

37 Greenfield

Williamstgun Fitchburg

North Adams

21 21

. Boston
Pittsfield

Provincetown
11

Springfield

Plymouth

New Bedford

The Graph Interface

As with many of our structures this semester, we will haverdarface that defines a general
behavior of graphs, independent of what structures we By tuse to represent them in specific
implementations.

See Structure Source:
/ home/ cs501/ src/ structure5/ Graph. j ava

G aph has two type parameters\-determines the types of the labels of the graph vertiEes,
determines the types of the labels of the graph edges.

We have the usual methods likeld, r enove, get, cont ai ns, but what should these mean?
We have both vertices and edges!

Here, we use these to manipulate the vertices in the graph.

Note that vertices are specified by their labels. Often weusi¢ strings, but the labels may be of
any type.

There is a corresponding set of methods that deals with etbgéshese are nameatddEdge,
r enoveEdge, etc.

Note that edges are added by specifying the labels of theegsrtio which it is connected, and the
label of the edge itself.

Theget Edge method doesn’t return an edge label but rather a new steigtarhaven't looked
at yet called afcdge. We will see this one shortly.

And there are also a number of methods that deal with vertindsedges being “visited”. Many
graph algorithms need to know which vertices or edges tleeglveady considered, so this has
been designed right into the graph interface.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Finally, there are a number of methods that give us somenrdton about the graph or about
particular vertices, such aegr ee, nei ghbor s, and iterators over vertices an edges.

Implementations of Graphs
First, we have classes to represent vertices and edges @tequite simple:

See Structure Source:
/ home/ ¢s501/ src/ structureb5/ Vertex. java

First, we notice thaVer t ex is not a public class. Code outside of the structure cannateia
Vert ex.

A Ver t ex is uniquely defined by its label (an object of tyige

Important note: the label used for ouer t ex can be of any type, butis assumed tdrenutable
If it is an instance of a class that can be modified (e.¥g@t or), we cannot modify it after using
it as aVer t ex label.

We also keep thei si t ed flag for use later in traversals and other algorithms.

See Structure Source:
/ home/ ¢s501/ src/ structure5/ Edge. j ava

Unlike theVer t ex, Edge is a public class. Som@& aph methods return agdge, so it must be
public. AnEdge is defined by its twd/er t exs, and also may have a label of its own. It also has
thevi si t ed flag.

Ver t ex andEdge classes may need to be extended as we implement specificafy@eaphs.
A Gr aph is really just a mechanism to manage all of these edges atideger

If there are a fixed number of edges from each node then we earfiRad number of edges stored
with each node (like a binary tree).

For general graphs, we typically use either

1. anadjacency matrixor
2. adjacency lists
As a running example, we will consider an undirected graparelthe vertices represent the states

in the northeastern U.S.: NY, VT, NH, ME, MA, CT, and RI. An edgésebetween two states if
they share a common border, and we assign edge weights esegpithe length of their border.

We will represent this graph as both an adjacency matrix aratigacency list.

Adjacency Matrix Representation

In an adjacency matrix, we have a two-dimensional arrayexad by the graph vertices. Entries
in this array give information about the existence or noistexce of edges.

4

CSC 501 Data Structures and Algorithm Analysis Fall 2014

We represent a missing edge withl | and the existence of an edge with a label (often a positive
number) representing the edge label (often representingghty.

Labels of vertices are stored in a dictionary, so we can Igogarresponding index for each vertex
label.

Adjacency matrix representation of NE graph
H HNY\VT\NH\ME\MA\CT\RIH

NY || nul | 150 | null | null 54 70 | null
VT 150 | nul | 172 | nul | 36 | null | null
NH || nul | 172 | nul | 160 86 |null | null
ME || nul | | nul | 160 [null [null | null | null
MA 54 36 86 |null | null 80 58
CT 70 | null | null | null 80 |[null 42
Rl || null | null | null | null 58 42 | nul |

If the graph is undirected, then we could store only the lo@emupper) triangular part, since the
matrix is symmetric.

Since there is a lot of the implementation that will be comrhetween the directed and undirected
matrix-based graphs, the structure package defines amaethdtas<s aphMat ri x.

See Structure Source:
/ honme/ cs501/ src/ structureb5/ G aphMatri x. j ava

Two implementationsx aphMat ri xDi r ect ed andGr aphMat ri xUndi r ect ed, extend it,
adding in the functionality that depends on the directesiitd the graph.

See Structure Source:
/ home/ ¢cs501/ src/ structure5/ G aphMatri xDirected. j ava

See Structure Source:
/ home/ ¢s501/ src/ structureb/ GraphMatri xUndi rect ed. j ava

In the abstract class, we declare all of the instance vasaikeded to support both matrix-baseds
implementations:

e dat a: a two dimensional array of edges. Note that we need to stera asCbj ect for
the same reasons we saw in the implementatioreaft or . In actuality, the items stored in
this array will be of typeedge<V, E>.

e freeli st: alist of integers which represent available vertex ingliddore on this below.

e di ct: amapping from vertex labels to (integer) vertex indices tan be used to index into
thedat a array.

e di rect ed: aboolean flag to indicate the directed-ness of the graph

CSC 501 Data Structures and Algorithm Analysis Fall 2014

We won’t worry too much about thigap that translates vertex labels to indices yet. It's using a
hash table — a topic we’ll cover after graphs. For now, juatize it should be (and will be) an
efficient tool to look up indicies from vertex labels.

The free list indicates which of our vertex indices are alad# to be assigned to new vertices being
added to the graph. For efficiency of the matrix-based implaation, the maximum number of
vertices is specified at construction time. This will be apamant restriction to be aware of with
the matrix-based representation of graphs. It could be rtmdrpand as needed likevact or ,

but this implementation does not support that. We would &imym out of space for vertices and
throw an exception.

The constructor, as we expect, initializes our instancebes to represent an empty graph. Since
the constructor doesn’t need to care whether the edgesraceti or not, the constructor can be
defined in the abstract class.

However, it is declared agsr ot ect ed since this will not be called by users, they will need to
construct directed or undirected constructors.

Those constructors don’t do anything else, but they aressacg because we can’t construct an
instance of an abstract class. Note that they pass the amispoolean value to the abstract class
constructor to indicate directed-ness.

Note that by constructing @ aphMat ri x capable of storing up tei ze vertices, we allocate
O(size?) space, even for an empty graph!

Adding a vertex can be done entirely in the abstract clas$isss the same for both directed and
undirected graphs. If the vertex is not already in the grayhlook up a free index and associate
it in our map with the label of the vertex.

However, we store more than just the index for the label, wee G aphMat r i x-specific
extension of th&/er t ex class.

See Structure Source:
/ home/ ¢cs501/ src/ structure5/ G aphMatri xVertex. java

In addition to the label and the visited flag provided\sr t ex, G aphMat ri xVer t ex stored
the index to allow quick access from a Vertex to its row/catumdex in the adjacency matrix.

In the vertex add method, we are just making sure that wetradding a duplicate vertex, getting
an available row, and creating a n&@vaphMat r i xVer t ex and remembering it in our mapping
between labels and vertices. The row/col number is remesdlees part of the vertex.

The cost of this depends on the cost of the methods assoaidtiedhe label/vertex mapping.
Efficientimplementations of such mappings will be the sabpd the last major topic in the course.
At worst, it should involve linear time searches, and weskk st can be much better.

Adding an edge, however, requires knowledge of the direstess, so this is an abstract method in
the abstract class, and is provided by the subclasses. Thenmantations are similar:

e For the undirected graph, we find the indices of its endp@intscreate an edge to be stored
in two matrix slots (since we need to represent it in bothadioms).

6

CSC 501 Data Structures and Algorithm Analysis Fall 2014

e For a directed graph, the method is the same, except we odlyhadedge in the specified
direction, leaving the edge corresponding to the othecto® alone.

Removing a vertex can be done in the abstract class. We reitrfoemithe lookup table, clear any
edges that might be using that index, and add the now-al&itedsition to the free list. Note that
this means edges are silently removed if either of theiicestis removed.

Removing an edge needs to be done in the subclasses, agaircao vamove the edge from just
one matrix slot in the directed case, two matrix slots in thditected case.

Finding a vertex or an edge or checking containment of \&star edges are also simple and done
in the abstract class.

Mutator and accessor methods to set and retrieve the vaiteloutes of the vertices and edges are
also straightforward.

vi si t andi sVi si t ed apply to verticesyi si t Edge andi sVi si t edEdge apply to edges,
r eset clears the visited flags for all vertices and edges.

We can easily get the number of vertices (returnedibye()) by querying the number of vertices
in the mapping.

The number of edges can't be determined in the abstract, dassis an abstract method and is
defined appropriately in the subclasses.

We can compute the degree of a vertex by looking across itarmixcounting up the nonul | s.
If the graph is directed, this will be either in- or out-degyrdepending on how we orient the matrix,
and if we want the other, it would have to be provided in a s&ggamethod.

There is also a methaaei ghbor s to get an iterator over all vertices adjacent to a given xerte

Adjacency List Representation

An adjacency list is composed of a list of vertices. Ass@datith each each vertex is a linked list
of the edges adjacent to that vertex.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Vertices Edges
NY |VT/150—={MA/54|—s CT/70

VT [NY/A50—NH/1723—"|MA/36

NH [™VT/172—ME/160—"|MA/86

ME [NH/160

MA [INY/54—VT/36 [™|NH/86[—™CT/80 ™ RI/58

CT [™INY/70[—|MA/80[—™| RI/42

Rl [|MA/G8[—|CT/42

Once again, the implementation is broken into an abstrass¢hat provides the data and function-
ality that are common to both the directed and undirected, @@=l concrete classes that implement
the specifics for each directed-ness.

See Structure Source:
/ home/ cs501/ src/ structureb/ GaphLi st.java

See Structure Source:
/ home/ ¢cs501/ src/ structure5/ G aphLi st Di rected. j ava

See Structure Source:
/ home/ ¢s501/ src/ structure5/ G aphLi st Undi rect ed. j ava

In GraphLi st , we see that the graph needs to contain a collection of esttic

This collection could be vector or linked list, but we’ll usemething more clever. Again, we will
consider an efficient way to do this after our discussion apys.

Each vertex holds collection of edges that are adjacent to it

Similarly the list of edges could be implemented in many wagsluding all kinds of lists or
binary search trees. We’'ll use singly-linked lists.

See Structure Source:
/ home/ cs501/ src/ structureb/ G aphLi st Vert ex. j ava

There’s a lot more going on here than there was inGhaphMat r i xVert ex.

Addition of an edge to a vertex’s singly-linked list of edgedl always be done at beginning of
list (constant time, once we find the vertex).

Edges connected to a given vertex can be held in order by kewdrdo not do this.

For directed graphs, we only need to store an edge in onexigelitd. For undirected, each edge

8

CSC 501 Data Structures and Algorithm Analysis Fall 2014

is inserted into two lists.

Back to theGr aphLi st abstract class. Again, we implement those things that alependent
of directed-ness.

The constructor doesn’t need to do as much, and doesn’asédlonuch space)(1), though we
haven't yet seen the details of thashTabl e implementation of &/&ap).

Adding vertices is just the addition of a new entry in the magp

Remove needs to be done in the subclasses, since we must riraaeztex from all edge lists in
which it appears (see below).

Many operations on edges depend on the directed-ness.

Some operations that we could implement in the abstracs ésighe adjacency matrix represen-
tation need to be implemented in the subclasses.

Some others have been moved into the vertex implementation.
First, we’'ll look more aiGr aphLi st Undi r ect ed.

Adding edges is relatively straightforward: just add ithie tadjacency lists of both vertices if it is
not already there.

Notice how deleting a vertex is expensive since we must eaktadjacent edges which are in
each neighboring vertex. Fortunately, we don’t have to kliecthe edge in all vertex edge lists,
only the neighbors of the vertex being removed.

Deleting an edge requires a search of the appropriate vedig list(s).

What about space usage? The adjacency matrix represensatione efficient for relatively dense
graphs. The adjacency list representation is more effi¢gpatce-wise) for sparse graphs.

Graph Applications

Example: Reachability

As a simple example of something we can do with a graph, werméte the subset of the vertices
of a graphGG = (V, E') which arereachablefrom a given vertex by traversing existing edges.

A possible application of this is to answer the question “wehean we fly to from ALB?”. Given
a directed graph where vertices represent airports andsexgmect cities which have a regularly-
scheduled flight from one to the next, we compute which otivpogs you can fly to from the
starting airport. To make it a little more realistic, perbaye restrict to flights on a specific airline.

For this, we will make use of the “visited” field that we haveluded in our implementation of
vertices and edges.

We start with all vertices markes as unvisited, and when tbhequure completes, all reachable
vertices are marked as visited.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

See Example:
/ home/ ¢cs501/ exanpl es/ Reachabi l ity

This will visit the vertices starting from in a breadth-first order
If we replacet oVi si t by a stack, we will visit vertices in depth-first order

There is a recursive version in the text that performs a demhreachability, with the stack
implicit in the recursion.

The cost of this procedure will involve at ma3t|V'| +| £|) operations if all vertices are reachable,
which is around(|V|?) if the graph is dense.

We can think about how to extend this to find reasonable fliggndgy perhaps requiring that all
travel takes place in the same day and that there is a mininfi@® minutes to transfer.

Example: Transitive Closure

Taking thetransitive closureof a graph involves adding an edge from each vertex to alhadae
vertices. We could do this by computing the reachabilitygfach vertex, in turn, with the algorithm
above. This would cost a total 6f(|V|3).

A more direct approach is due to Warshall.

We modify the graph so that when we’re done, for every pairastivesu andv such that is
reachable fromu, there is a direct edge fromto v.

Note that this is a destructive process! We modify our stgrgiraph.

The idea is that we build the transitive closure iterativeli{hen we start, we know that edges exist
between any vertices that are connected by a path of length 1.

We can find all pairs of vertices which are connected by a phlgtngth 2 (2 edges) by looking at
each pair of vertices andv and checking, for each other vertex, whether there is anotréex
w such that: is connected ta andw is connected te. If so, we add a direct edgeto v.

If we repeat this, we will then find pairs of vertices that weoanected by paths of length 3 in the
original graph. If we do thi$l/| times, we will have all possible paths added.

The text has an example Java methodh@ok Exanpl es. j ava) that will compute this using
this basic idea, though it reorders the loops to gain somaesify.

Note: | believe that the inner iterators used by the text'tho@ need to be recreated or reset after
each iteration of the outer loops.

The outermost loop is over the “intermediate” vertices (tt®, and inner loops are overandwv.
This is still a©(|V) algorithm, though efficiency improvements are possible.

Here is psuedocode for Warshall’'s algorithm as an operati@ctly on an adjacency matrix rep-
resentation of a graph, where each entry is a boolean valiigaimg whether an edge exists.

warshal | (Al 1..n][1..n])

10

CSC 501 Data Structures and Algorithm Analysis Fall 2014

/1 Each R{i}[1..n][1..n] is an iteration toward the closure
R{0} = A
for k=1 to n
for i=1 to n
for j=1 to n
RK}[IT[)] = RIk-1}[1][j] OR
(R{k-1}[i][k] AND R{k-1}[K][]j])

return R{n}

Example: All Pairs Minimum Distance

We can expand this idea to getoyd’s Algorithmfor computing minimum distances between all
pairs of (reachable) vertices.

For the example graph:

Lowell

Williamstgwn Greenfield

North Adams
21 21

Pittsfield

50 Fitchburg

Boston

Auburn Provincetown

11

Springfield

Plymouth

New Bedford

We can use the same procedure (three nested loops oveesgdr we did for Warshall's Algo-
rithm, but instead of just adding edges where they may no¢ leaisted, we will add or modify
edges to have the minimum cost path (we know of) between eaich p

The pseudocode of this algorithm below again works direatiythe adjacency matrix, now with
weights representing the edges in the matrix.

floyd(W21..n][1..n])
D=W // matrix copy

for k=1 to n
for i=1 to n
for j=1 to n
Dlil[j] = mn{D{i][j],D{i][k]+DIK][j]}

return D

11

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Like Warshall's Algorithm, this algorithm’s efficiency da isO(|V[?).
Notice that at each iteration, we are overwriting the adjagamatrix.
And we can see Floyd’s Algorithm in action using the abovepsengraph.

See Example:
/ home/ cs501/ exanpl es/ MassFl oyd

Example: Dijkstra’s Algorithm

Dijkstra’s Algorithmis a procedure to find shortest paths from a given vestexa graphG to
all other vertices. The algorithm incrementally builds ®-gmaph ofG which is a tree contain-
ing shortest paths from to every other vertex in the tree. A step of the algorithm iasf
determining which vertex to add to the tree next.

This is a variant of the approach in the text and the approaahwll use in the last programming
project.

Basic structures needed:

1. The graphG = (V, E) to be analyzed.

2. The tree, actually stored as a mdp, Each time a shortest path to a new vertex is found,
an entry is added t&' associating that vertex name with a pair indicating the tataimum
distance to that vertex and the last edge traversed to get the

3. A priority queue in which each element is an edgev) to be considered as a path from
a located vertex, and a vertexo which we have not yet located. The priority is the total
distance from the starting vertexto v using the known shortest path frosrto u plus the
length of (u, v).

The algorithm proceeds as follows:

Tis an enpty nmap;
PQis an enpty priority queue
Al vertices in V are marked unvi sited;
Add s to T with a total distance of 0 and a null previous edge;
mark s as visited in G
Add each edge (s,v) of Gto PQw th appropriate val ue
while (T.size() < Gsize() and PQ not enpty)

do

next Edge = PQ renove();
until (one vertex of nextEdge is visited and the other is unvisited)
or until there are no nore edges in PQ

/1 assune next Edge = (v,u) where v is visited (in T) and u is
unvisited (not in T)

12

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Add u to T; mark u as visited in G
Add (u,v) to T;
for each unvisited nei ghbor w of u
add (u,w) to PQw th appropriate weight

When the procedure finish€s, should contain all vertices reachable fregmalong with the last
edge traverest along the shortest path frolm each such vertex.

Disclaimer: Many details still need to be considered, big iththe essential information needed
to implement the algorithm.

Consider the following graph:

Lowell

Williamstg 37 Greenfield

Fitchburg

North Adams

30
21 21

Boston
Pittsfield

Auburn Provincetown

11

Springfield

Plymouth

New Bedford

From that graph, the algorithm would construct the follogviree for a start node of Williamstown.
Costs on edges indicate total cost from the root.

13

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Lowell

Greenfield
42 92 Fitchburg 125

North Adams

. Boston
Pittsfield

Provincetown
32

Springfield Auburn

Plymouth

New Bedford

14

CSC 501 Data Structures and Algorithm Analysis Fall 2014

We obtain this by filling in the following table, a The table below shows the evolution of the priority
map which has place names as keys and pairs inqueue. To make it easier to see how we arrived at the
dicating the distance from Williamstown and the solution, entries are not erased when removed from
last edge traversed on that shortest route as valthe queue, just marked with a number in the “Seq”

ues. column of the table entry to indicate the sequence
It is easiest to specify edges by the labels of theirin which the values were removed from the queue.
endpoints rather than the edge label itself. Those which indicate the first (and thereby, shortest)

paths to a city are shown in bold.

[Place \ (distance,last-edge) | H

(distance,last-edge) | Seq]|

W’town (O,nul I') _
North Adams | (5, W'town-North Adams) (5, Williamstown-North Adams) 1
Pittsfield | (21, Willlamstown-Pittsfield) (21, Williamstown-Pittsfield) 2
Lee (32, Pittsfield-Lee) (26, North Adams-Plttsfl_eId) 3
Greenfield (42, North Adams-Greenfield (42, North Adar_ns-GreenﬁeId) >
Springfield (76, Lee-Springfield) (32, P'ttSf'el_d'L?e) 4
Fitchburg (92, Greenfield-Fitchburg) (76, Lee-.Sprlngfl.eId)_ 6
Auburn (123, Springfield-Auburn) (81, Greenflleld-S.prlngfleId) 7
Lowell (125, Fitchburg-Lowell) (92, Greenfield-Fitchburg) 8
Boston (155, Lowell-Boston) (123, Springfield-Auburn) 9
New Bedford | (194, Auburn-New Bedford) (124, Fitchburg-Auburn) 10
Plymouth (195, Boston-Plymouth) (125, Fitchburg-Lowell) 11
Provincetown | (271, Plymouth-Provincetown (194, Auburn-New Bedford) 14
(170, Auburn-Boston) 13
(155, Lowell-Boston) 12
(213, Boston-New Bedford) 16
(195, Boston-Plymouth) 15
(226, New Bedford-Plymouth) 17
(271, Plymouth-Provincetown) 18

From the table, we can find the shortest path by tracing back the desired destination until we
work our way back to the source.

15

