Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2014

Topic Notes: Associations

Let’s consider a very simple example of a data structuredahAssoci at i on.

As the name suggests, Associ at i on is a way to associate pairs of objects, one of which is
thekey and one of which is thgal ue. Once created, the key cannot be changed, but the value
can.

Unlike most of the structures we have looked at so far, thés“general purpose” structure.

What should such a structure look like?

What instance variables will it need?

What constructors should be provided?

What methods will it need?

As we have seen, in Java, all objects that are not primitipedyare extensions of the class
j ava. | ang. Qbj ect, or justObj ect . This is very convenient when developing data struc-
tures, since we can develop our structures to hold refesetoogbj ect s and then use them to
store instances of any Java class. This inclugtasi ngs.

Note: very soon we will look at the idea génerics, which was introduced into Java a few years
ago and to our textbook and the structure package shordy. &tt for the moment, we will make
use of the fact that all Java objects are instances of €lassct for our data structures.

The text has an example that ugassoci at i onsto associate words with their “pig latin” equiva-
lents. We will use Associations in a similar example thabagges magic spells with a description
of their effect. The name of the spell will be the key, and ftea will be the value.

See Example:
/ honme/ cs501/ exanpl es/ Spel | s/ Spel | s. j ava

If we do a great job implementing akssoci at i on for this program, we have a good chance to
be able to use it again. Thisusability is essential to large-scale programming.

|mplementation in Structure
The structure package includesAsmsoci at i on class that we can use for this example.

See Structure Source:
/ home/ ¢cs501/ src/ structure/ Associ ati on. java

CSC 501 Data Structures and Algorithm Analysis Fall 2014

This class is defined as part package structure, meaning it can accegs ot ect ed
entries of other classes in the structure, and those classeaccess| ass Associ ati on’s
pr ot ect ed items.

Pre and Postconditions

The structure package uses an extension to Javadoc thatlgsawo new fields:@r e and
@ost . These ar@reconditions andpostconditions for the methods.

These comments set out a contract for the use of a particetrad. For instance, see the follow-
ing code:

[**
@re 0 <= index < this.length()
@ost returns character at "index" position
(starting count fromO) in this
* % [
public char char At (int index)
{...}

The contract expressed by the pre and postconditions ighbamplementer promised that the
postcondition will be true after executing the method, agjlas the user promises that the precon-
dition will be true when it is called. Thus both the caller dhd implementer have responsibilities
under the contract.

For the above example, the user is required to specify raashex which is legal for the string
(between 0 andryStri ng. | engt h() - 1, inclusive), and if the user meets that commitment,
the implementation promises to return the character in tigiex position ofny St ri ng.

Assertions

It is useful having these as comments, but often it is muchenogeful to have them checked at
run-time, as if any fail, it is indication of an error in theggram.

Moreover, the location of the failure is more likely to prdeia pointer to the source of the error
than just getting a wrong answer (or system crash).

Thus, there is a clagssser t in the structure package which contains methods to chedetae
run-time.

Thus if we were writing the code for& r i ng’s char At method above, we could write:

public char charAt(int index) ({
Assert.pre(0 <= index && index < |ength(),
"I ndex out of bounds for string");
Assert.post(..., "post condition error");

2

CSC 501 Data Structures and Algorithm Analysis Fall 2014

If either of the boolean conditions is false at the time theyexecuted then the system will raise
an exception (i.e., crash) and print a message telling tipag4postcondition failed and give the
error message.

Sometimes pre and postconditions can't be expressed ebnaois efficiently (e.g., how do you
say “the array is sorted”), so we may not be able to enforceetlrethe code using th&sser t
methods.

Another potential pitfall when enforcing pre and postcaindis with assertions, is that you may
be tempted to call the routine recursively (and get yoursédf non-terminating computation) in
checking pre or postconditions! In these cases, the consmahitave to suffice.

Aside: Eiffel is an object-oriented programming languagtuilt-in support for pre and post-
conditions. It also has compiler switches which can be wroe and off to determine whether
or not pre and postconditions are checked during a prograresution (the default is that only
preconditions are checked).

We will expect all methods in the classes you implement heteetdecorated with Javadoc-style
pre and postconditions, and checks usingAkeer t methods where it makes sense.

Modern versions of Java provide a keywasiser t , but we will not use it this semester.

Back to Association.java

The actual implementation of th&ssoci ati on class is pretty straightforward. A couple of
quick notes:

e We require &key to construct a newAssoci at i on, but theval ue is optional. If not
provided, theval ue part defaults tawul | .

e Two Associ at i ons are considered equal (by thqual s method) if theirkeys are the
same, regardless of theial ues.

e We have araccessor (“getter”) for thekey (get Key) but no mutator (“setter”). Once
created, th&key of anAssoci at i on may not be modified.

e Fortheval ue, we have both an accessgef Val ue) and a mutatorget Val ue).

