Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2014

Lab 11: Dijkstra’s Road Trip
Due: 6:00 PM, Tuesday, December 2, 2014

This lab, your last, and spread over 2 weeks, includes tat&ted to trees and graphs.

You may work alone or in groups of 2 or 3 on this lab. Only onersigision per group is needed.

Getting Set Up

To get your BlueJ environment set up for this week’s lab assagnt, start BlueJ and choose “New
Project” from the “Project” menu. Navigate to your folder fiis course and choose the name
“Labl11” (no spaces) for the project.

Create a document where you will record your answers to therkeassignment and lab questions.
If you use plain text, call itFabl11. t xt ”. If it's a Word document, you can call it whatever you’'d
like, but when you submit, be sure you convert it to a PDF deentfi ab11. pdf " before you
submit it.

L ecture Assignment Questions

We will usually discuss these questions at the start of dagke lab due date, so no credit can be
earned for late submissions of lecture assignment queastion

? LA Question 1:
| Bailey Problem 13.12, p. 339. (2 points)

? LA Question 2:
| Bailey Problem 13.20, p. 340. (2 points)

? LA Question 3:
| Bailey Problem 14.14, p. 365. (2 points)

? LA Question 4:
Start with a complete AVL tree containing the values 10, 20 4%, 50, 60, and 70. Insert the
values 31, then 32, showing any rotations needed to maititaiAVL condition. (3 points)

? LA Question 5:
Now, starting with the original tree, insert 32 then 31. Slamwy rotations needed to maintai
the AVL condition. (3 points)

n

CSC 501 Data Structures and Algorithm Analysis Fall 2014

? LA Question 6:

Design an AVL tree of height 4 such that if one more value igitex, the root is the first
unbalanced node on the way back up the tree. Once you haveasush, insert that value,
perform the proper rotation(s) and verify that the AVL cdmat is once again met. (3 points)

Problem Set Question: Dijkstra’s Algorithm Practice

? Question 1:

Using the graph from Bailey Problem 16.7, p. 436, use Dijks#dgorithm to compute th
shortest distance from Dover to Phoenix by filling in the ¢ésbbelow, using the algorith
and notation as shown in the example in the graph notes. (b@spo

The data structures and the implementation of Dijkstraj@adhm are similar to those you will
be using for the programming assignment below. Vertex abed of typeCi t y and edge labels
are of typelr avel Li nk. You may assume thdr avel Li nk provides methods to retrieve road
names, distances, and driving times, but those detailsatlbe important. The priority queue will
contain objects of typ€onpar abl eAssoci at i on<l nt eger, Edge<Ci ty, Travel Li nk>>,
where the keys are the distances or driving times, as apgpteprThe algorithm will populate
a Map of shortest/fastest routes. TiMap’s keys will be of typeCi t y and the values will be
Conpar abl eAssoci at i on<l nt eger, Edge<Ci ty, Travel Li nk>> objects, from which
we can get the total distance/time to thiet y from the startingCi ty.

For each case, you are to fill in the given table, represenhiad/ap, in the order in which the
algorithm fills in entries, and show the values in the progtieue. Do not erase values as they are
removed from the priority queue, just cross them out andevaibhumber next to them to indicate
the order in which they are removed from the queue. The mapaadty queue should indicate
their contents at the time the city “Phoenix” is added to ttegpm

Fill in the following table, which is avap that hasCi t y objects as keys anGonpar abl eAs-
soci at i ons of the shortest distance from Dover to the last edge tradess that shortest route
as values.

It is easiest to specify edges by the labels of their endpoather than the edge label itself, which
might not be unique.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

[City \ (distance last-edge) |
Dover O,nul)

Also, use the table below to keep track of your priority quetRemember, don’t erase entries
when you remove them from the queue, just cross them out ankl threem with a number in the

“Seq” column of the table entry to indicate the sequence ircwthe values were removed from
the queue.

CSC 501 Data Structures and Algorithm Analysis Fall 2014

[(distance,last-edge) | Seq]|

Problem Set Questions. Generalized Heapsort

You learned about d-heaps as you completed the questionsriprevious lab. You also have
learned about heapsort, which uses a 2-heap as an intetmsgfigesentation to sort the contents
of an array. Let’s consider a generalization of the heapded:

e First, insert the elements to be sorted into a priority quU&WR).

e Then, remove the elements one by one from the PQ and place thénat order, into the
sorted array.

For heapsort, the PQ is a 2-heap, but any PQ implementatietdweork (naive array- or list-
based with contents either sorted or unsorted, a d-heapgearabinary search tree). Depending

4

CSC 501 Data Structures and Algorithm Analysis Fall 2014

on which underlying PQ is used, the sorting procedure wikped in a manner similar, in terms
of the order in which comparisons occur, to one of the otheirgpalgorithms we have studied
(e.g., selection sort, quicksor#c.).

? Question 2:
For each of the following underlying PQ structures, statéctvisorting algorithm proceeds
in the manner most similar to the PQ-based sort using thattR@tsre, and explain you

answer briefly. (10 points)

=

e 1l-heap
e 3-heap
e (n-1)-heap

e binary search tree

Practice Program

<4 Practice Program:
Write a programLi tt | eG aph. j ava that constructs a graph using one of the structure

package'sa aph implementations that represents the graph below, themsptiout usin
theG aph’st oSt ri ng method. (4 points)

Programming Assignment

For your last bigger programming task, you will again be wagkwith the highway graph data
files linked fromhtt p: // cour ses. t eresco. org/ chn graphs. ht ml . This time, we
will be using the entire file, not just the waypoints.

The Data

Recall that the data is in ‘gr a” files which have the following format:

CSC 501 Data Structures and Algorithm Analysis Fall 2014

e The first line consists of two numbers: the number of verticeg (we’ll call them “way-
points”) and the number of edge;|, (road segments that connect adjacent waypoints).

e The nextV| lines descibe the waypoints. Each line consists of a stisgiibing a waypoint
(its “label”), followed by its latitude and longitude as fto&y-point numbers.

e The last|E| lines describe the road segments. Each line consists of iwiars specifying
the waypoint numbers (0-based and in the order read in fresiild)) connected by this road
segment, followed by a string with the name of the road or sdhdt form this segment.

Visualization of Graphs and Results

There are several motivations for using the highway datacsdielp study graphs and graph
algorithms. One significant one is the ability to visualibe input data and result data on a
map. Our data can be visualized by directing a browser athghtvay Data Explorer (HDX)”
http://courses.teresco. org/ chnl vi ewer/ and uploading a graph or other file in the
file selection box at the top of the page. HDX is built on the Gledaps API.

The list of graphs ahtt p: // cour ses. teresco. org/ chm graphs. ht m has links to
load complete graph files and visualize them with HDX.

Your first task is to augment yollay poi nt Best program from a few weeks ago that used your
Best O structure to find the collections of waypoints that were trat find last alphabetically by
waypoint name, had the longest waypoint name, and were tttee&i north, south, east and west.
Extend your program so it creates seven output files, oneafdr ef the criteria, in “Waypoint List
File (WPL)” format. A WPL file consists of a list of waypoints, @mper line, with the waypoint
name, followed by a space, followed by the latitude, folldvixy a space, followed by the longi-
tude. Have your program create each file with apl ” extension. Then, from the HDX, to select
one of your WPL files and see the points on the map.

? Question 3:
Include screen shots from HDX of the plots of the top 25 wagfsoby each of the 7 criterla
for theusa- al | . gr a input graph. (7 points)

Building a Graph and Implementing Simple Queries

Your next task is to be able to read the entire contents ofjaa file and to create & aph
structure using the structure package’s graph implementathat represent all of the waypoints
(graph vertices) and their connections (graph edges).

? Question 4:

The structure package has 4 implementations ofah&ph interface: each combination pf
directed and undirected, and of list-based and matrixebaséich graph implementation js
most appropriate here, and why? (2 points)

Your overall approach will be to develop a Java program oggams that can read in graph data,
store it appropriately in memory, and perform a variety ofi@pions on that data. Two “starter”
Java classes will be emailed to you and are available on m¥gulshould work with these.

6

CSC 501 Data Structures and Algorithm Analysis Fall 2014

Come up with an appropriate graph structure (something thdstihe appropriate data in
the vertex and edge labels) to hold this data and write codenstruct one from a given
. gr a data file. You must use one of the graph implementations frava $tructures. Big

hint: labels need not be simple objects Iler i ngs orl nt eger s. You can use any object
type (including those you define yourself) for those lab@goints)

Print out, in a nice format, a list of all waypoints. This i®ethi st Pl aces method in the
starter code. (3 points)

Print out, in a nice format, a list of all connections. Thithiel i st Connect i ons method
in the starter code. (3 points)

Print out the northernmost and southernmost latitudes e#s#ernmost and westernmost
longitudes among waypoints in the graph, the shortest angelt waypoint names, the
lengths of the shortest and longest road segments, andeghegavroad segment length in the
graph. Implement this as a new comm&htdt s. Donot remember these in variables when
you are reading the file and creating the graph. Compute them your graph structure
when the command is issued. In the case of ties for the lorgegor shortest names, your
command should print all waypoint names of the extreme lend@f points)

For example, for thelc- al | . gr a graph, mySt at s command prints:

Lat, Lng extents: (38.792435,-77.070508) to (38.984333,-76.934123)
Shortest waypoi nt nanes:

| -395@

| -395@

| -295@3

| -395@

| -295@

I -395@

| -395@

| -395@

| -295@

| -395@

Longest waypoi nt namnes:

DC295@ - 295/ 695&I - 295@ &I - 695@ - 295/ 295

Connection lengths: shortest 0.0665295151, |ongest 1.69070, average 0.65215

Important note: while you might use an array ovact or to track some information during
the construction of your graph, the only persistent stmgcin your implementation should be an
instance of & aph class.

Bringingin Best Of

Your next task is to add a capability to your program to be ablénd and report the: longest
or shortest edges in the graph. Implement these as the casrRannt Longest Edges and
Pri nt Short est Edges in your program.

For example, with theanyt . gr a graph, the 10 shortest edges:

7

CSC 501 Data Structures and Algorithm Analysis Fall 2014

YT6@mcBoat Lau to YT6@X646670 via YT6 | ength 0.0000

YT1@brLakeRS to YT1@C YT via YT1 length 0.0936

YT1@eaCrkAir to YT1l@anCus via YT1 length 0.1077

YT2@ukeSt to YT2@xo0Bl aFry via YT2 length 0.1979

YT4_S/YT6_S to YT4@ dCanRd&YT6@J dCanRd_S via YT4, YT6 | ength 0.2299
YT6@x822 to YT6@x116 via YT6 |length 0.2522

YT6@X297007 to YT6@X720169 via YT6 | ength 0.2704

YT4@x88 to YT4@x87 via YT4 length 0.2739

YT2@X456835 to YT2@d i AgaRd via YT2 length 0.3073

YT6@X401385 to YT6@x771 via YT6 | ength 0.3446

and the 10 longest edges:

YT1@X372730 to YT1@X931620 via YT1 length 10. 3368
YT1@X687758 to YT1@X612218 via YTl | ength 9.8789
YT3@X260467 to YT3@x898989 via YT3 | ength 9.0087
YT2@X558217 to YT2@x aRd via YT2 | ength 8.2056
YT1@X336247 to YT1@X858279 via YTl length 7.4635
YT4@x48 to YT4@X800213 via YT4 length 7.1541
YT5@X717826 to YT5@X920982 via YT5 |length 7.0805
YT1l@anCus to YT1@X680719 via YTl | ength 6.9887
YT2@HunCrkRd to YT2@onCrkRd via YT2 | ength 6.9588
YT6@X620794 to YT6@apCanTr via YT6 | ength 6.8125

A format similar to the above would be appropriate for textpo. One way to accomplish this
is to create a list of all edges and sort them by edge lengthwButan do this more efficiently,
as you learned in thBest O lab. For 12 points, compute the set of longest/shortestseuge
©(n|E|) time, wheren is the number of longest/shortest edges you are lookingfof | is total
the number of edges in the graph. Note that you can earn athpasits if your implementation is
less efficient than the above, or if it does not compute theastdges from the graph in memory
(as opposed to pre-computing them while the graph data wag lwaded in).

For 5 points, you are to implement a second option, wheragtedf longest or shortest edges are
written to a file in a particular format. These should be impated in the commanddapShor t est Edges
andMapLongest Edges. Here, each edge in the set of results should be specifiedabinglthe

vertex information for each of its endpoints on conseculines of a file. For example, the 3
shortest edges fromanyt . gr a would be specified in the file as:

YT6@vbacBoat Lau 62. 86788 -130. 82806
YT6@X646670 62. 868138 -130.827901
YT1@br LakeRS 59. 998729 -132. 116818
YT1@C/ YT 60. 000075 -132.117087
YT1l@eaCrkAir 62.407424 -140. 860358
YTl@anCus 62.40891 -140. 85935

CSC 501 Data Structures and Algorithm Analysis Fall 2014

These files should be given aanp extension. Once such a file is created, it can be visualized by
directing a browser dit t p: / / cour ses. t er esco. or g/ chm vi ewer/ and uploading the
. nnp file in the file selection box at the top of the page.

I mplementing Dijkstra’s Algorithm

Your final programming task is to develop a simplified “drigidirections” system based on the
mapping data you have been working with.

You should use a variant of Dijkstra’s Algorithm to comput®dest path from a given starting
point (a graph vertex) to a given destination point. The gan®rm of Dijkstra’a Algorithm
computes the shortest paths from a starting vertex to atiratbrtices, but you will be able to stop
one you find a shortest path to the specified destinationtha calculating the shortest path to
all other places. You will also need to make sure that you &aiently print/write the computed
route in the proper order (starting point to destinatiompoi

Once a shortest path is computed, you will need to be abletpubit in a human-readable form
(for theFi ndRout e command) or in a form plottable by HDX (for tidapRout e command).

For example, if you load thay-al | . gr a file, and compute a shortest path for a few nearby
points: US20@ésAve (the “Y” intersection at Western and Madison right near cas)pand
NY2/ US9 (Latham Circle), your path would traverse the following fgein

US20@esAve, NY443/ USOWAIS20&US20@ISOW NY5/ USOW US9/ USOW
| -90@/ US9, NY377/US9, NY378/US9, NY155/US9 and NY2/ US9.

Your “human readable” output might look something like this

Travel from US20@\ésAve to NY443/ USOWAUS20&US20 @SOW
for 1.56 mles along US20, total 1.56
Travel from NY443/ USOWAJS20&US20@JSOW t o NY5/ USOW
for 0.37 mles along USOW total 1.93
Travel from NY5/ US9Wto US9/ USOW
for 0.28 mles along USOW total 2.21
Travel from US9/USOWto |-90@/ US9
for 0.87 mles along US9, total 3.09
Travel from|-90@/US9 to NY377/US9
for 0.44 nmiles along US9, total 3.53
Travel from NY377/US9 to NY378/ US9
for 2.04 nmiles along US9, total 5.57
Travel from NY378/US9 to NY155/US9
for 2.24 niles along US9, total 7.81
Travel from NY155/US9 to NY2/ US9
for 0.78 niles along US9, total 8.59

Your plottable data for the Highway Data Examiner shouldrbe f. pt h” file. This file format
must match the following:

CSC 501 Data Structures and Algorithm Analysis Fall 2014

START US20@sAve (42. 666502, - 73. 791776)

US20 NY443/ USOWAUS20&US20@ISOW (42. 652458, - 73. 767786)
USOW NY5/ USOW (42. 656734, - 73. 763301)

USOW US9/ USOW (42. 659938, - 73. 759975)

USO |-90@/ US9 (42. 669562, - 73. 748817)

US9 NY377/US9 (42.675873, - 73. 747659)

USO NY378/ US9 (42. 704925, - 73. 754568)

US9 NY155/ US9 (42. 736832, - 73. 76225)

USO NY2/ USQ (42.748115, - 73. 761048)

Here, each line describes one “hop” along the route, congisf the road name of the segment
(i.e.,, your edge label), the waypoint namee(, the label in your vertex), and the coordinates of that
point. The exception is the first line, where we substi®TéRT, since you don’t have to take any
road to get to your starting point.

These files should be given. @t h extension. Once such a file is created, it can be visualized by
directing a browser dit t p: / / cour ses. t er esco. or g/ chni vi ewer/ and uploading the
. pt h file in the file selection box at the top of the page.

Printing human-readable directions is worth 20 points, gaderating a pt h file is worth 5
points.

Submitting

Before 6:00 PM, Tuesday, December 2, 2014, submit your lagrading. There are two things
you need to do to complete the submissiof): Gopy your file with the answers to the lecture
assignment and lab questions into your project directorysiBe to use the correct file name. If
you prepared your answers in Word, export to a PDF file and gubut. (i) Upload a copy
of your lab (a. 7z or . zi p file containing your project directory) using Submission Batx
http://sb.teresco. orgunder assignment “Labl11”.

Grading

This assignment is worth 125 points, which are distribuetbdows:

10

CSC 501 Data Structures and Algorithm Analysis Fall 2014

| Feature | Value | Score]
LA Question 1 (13.12) 2
LA Question 2 (13.20) 2
LA Question 3 (14.14) 2
LA Question 4 (AVL Tree insert 31,32) 3
LA Question 5 (AVL Tree insert 32,31) 3
LA Question 6 (AVL Tree example) 3
Question 1 (Dijkstra’s Algorithm Practice) 10
Question 2 (Generalized Heapsort) 10
Li tt| eG aph Practice Program 4
Question 3\\ypoi nt Best map screen captures) 7
Question 4 (whiclar aph and why) 2
Mappi ng graph construction 9
Mappi ng | i st Pl aces method 3
Mappi ng | i st Connecti ons method 3
Mappi ng St at s method 12
Mappi ng Pri nt {Shortest, Longest }Edges commands 12

Mappi ng Map{Short est, Longest }Edges commands 5

Mappi ng Fi ndRout e command 20
Mappi ng MapRout e command 5
Mappi ng style, documentation, and formatting 8
| Total | 125 | |

11

