Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Trees

We've spent a lot of time looking at a variety bfiear structures. There was a natural linear
ordering of the elements in arrays, vectors, linked listee tHhén put some restrictions on those
structures, looking at stacks and queues and ordered btregtures.

Just like we can write programs that can branch into a numbdirections, we can design struc-
tures that have branches.

Today, we’'ll start looking at our first more complicated sture:trees
In a linear structure, every element has unique successor.

In trees, an element may have many successors.

We usually draw trees upside-down in computer science.

You won't see trees in nature that grow with their roots atttpe(but you can see some at Mass
MoCA).

Examples of Trees

Expression trees
One example of a tree is @xpression tree

The expression
(2%(4-1))+((2+7)/3)

can be represented as

/ ®\ / @\
@ /g i\ ®
O @

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, peeform the operation at root. The
evaluation of subtrees is recursive.

Tournament Brackets

Another example is a tree representing a tournament bracket

/®\

N o N
@'u@@% B P c? @\ &0

(acompleteandfull tree)

or

/\

@0@ ®
d@@@@

(neither complete nor full)

Tree of Descendants

The text looks at an example of a pedigree chart — looking arsogm’s ancestors. Instead, we can
look at a person’s descendants. (Example drawn in class).

Definitions and Terminology
There are a lot of terms we will likely encounter when dealwith tree structures:

A treeis either empty or consists of r@ode called theroot node together with a collection of
(disjoint) trees, called itsubtrees

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

An edgeconnects a node to its subtrees

The roots of the subtrees of a node are said to behldren of the node.

There may be many nodes without any successors: These &é lealvesor leaf nodes
The others are calledterior nodes

All nodes except root have unique predecessagpapent

A collection of trees is called forest

Other terms are borrowed from the family tree analogy:
e sibling, ancestor, descendant
Some other terms we’ll use:
e A simple pathis series of distinct nodes such that there is an edge beteaan pair of

successive nodes.

e Thepath lengthis the number of edges traversed in a path (equal to the nuohibedes on
the path - 1)

e Theheight of a nodeés length of the longest path from that node to a leaf.
e Theheight of the treés the height of its root node.

e Thedepth of a nodés the length of the path from the root to that node.

e Thedegree of a nodes number of its direct descendents.

e The idea of thdevelof a node defined recursively:

— Theroot is at level 0.
— The level of any other node is one greater than the level gftent.

Equivalently, the level of a node is the length of a path frben oot to that node.

We will limit our initial discussion tdinary trees- trees whose nodes are all have degtez

We will also orient the trees: each subtree of a node is detisdaking either thieft or right.

Binary Tree Interface

There are many possible specifications of binary trees tloat seasonable insertion and deletion
of elements.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We will consider the one provided in the structure package find think about other possibilities
later.

Unlike what we have seen to this point, the structure pacllags not define an interface for binary
trees and then use implement that in one or more concreteeslaStructure simply implements
classBi nar yTr ee, so we will look right at that.

Unlike the linked list implementations, where we do not give users of the structures access to
the actual list nodes, the binary tree exposes more of itstsitre to users. The actual recursive data
structure is given directly to users. The implementatioedsgo ensure that changes that might be
made by users cannot render a tree invalid.

The tree is constructed of instances of clBssar yTr ee. EachBi nar yTr ee object has the
fields it needs to store its value and the parent and childeeées.

See Structure Source:
/ home/ ¢s501/ src/ structure5/Bi naryTree. java

A node has 4 fields, which we might draw as follows:

par ent

val
left |[right

Plenty of things to notice and think about here:

e \We have three constructors.

1. The first is used to create an “emptlgl nar yTr ee. We will see this constructor
used by the other constructors to create these empty trggada of havingnul |
references to represent empty subtrees. This allows makbaeto be called on these,
eliminating lots of special cases. We could alsomskl to represent empty trees, but
this would mean some extra code in several methods. Notetiyaempty tree nodes
may contain aaul | value. Regular tree nodes must contain mar- values.

2. The second constructor creates a tree node with no chi{dreeaf node) containing a
particular value.

3. The third constructor creates a tree node that may haldrehi Note that if a user of
this constructor specifiesraul | child, it is replaces with an empty tree instance.

e We have accessors to retrieve the children or parent of a node

¢ Note that the value and subtree links can be set by the udethdyparent reference is set
only in apr ot ect ed method. This is done to make sure we don'’t put the tree int@ad)(b
state where a parent points to a child but the child doesirit fpack to the parent.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

e We have a variety of other (self-explanatory) methods toewt information about a tree:
si ze, root, hei ght, depth,isFull,isEnpty,isConpl et e. Note the recursive
nature of many of these methods.

Binary Tree Example

We can construct a simple binary tree to represent and deadmaarithmetic expression using the
Bi nar yTr ee implementation:

((4+43)*(10-5))/2
See Example:

/ hone/ cs501/ exanpl es/ Bi nar yExpr essi onTr ee

There are two versions of this program:

1. Bi nar yExpr essi onTr ee. j ava stores the operators and values to be us&t as ngs.

e This lets us use Bi naryTree<Stri ng>.

e Since some are operators and some are numbers, we need kaoklgceat as appro-
priate, based on the contents of tier i ng.

2. Bi nar yExpr essi onTr ee(Qbj ect . j ava stores the operators @har act er s and the
numbers a$ nt eger s.

e Here we instead useBi nar yTr ee<Qbj ect >, since that’s the type that can repre-
sent both &har act er and anl nt eger .

e We check the actual type of the value retrieved withitimst anceof operator and
use the value as appropriate

Another option would be to define a common type along the liése Tokens from the postscript
lab.

In both cases, note the eeSt ri ng method that prints our binary tree in a nice format.

Tree Traversals

Iterating over all values in our linear structures is ugutdirly easy. Moreover, one or two order-
ings of the elements are the obvious choices for our itarati®ome structures, like an array or a
Vect or, allow us to traverse from the start to the end or from the exwk bo the start very easily.
A Si ngl yLi nkedLi st , however, is most efficiently traversed only from the staittie end.

For trees, there is no single obvious ordering. Do we vigtrhot first, then go down through the
subtrees to the leaves? Do we visit one or both subtreesebefiting the root?

We will consider 4 standarudlee traversaldor our binary trees:

5

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

preorder. visit the root, then visit the left subtree, then visit thght subtree.
in-order visit the left subtree, then visit the root, then visit thghti subtree.

postorder visit the left subtree, then visit the right subtree, thesitthe root.

p w0 DdpPF

level-order visit the node at level 0 (the root), then visit all nodesesel 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postdrdeersals of the expression tree we
looked at in the example code:

e preorder leads to prefix notation:
/[*+43-1052

e in-order leads to infix notation:
4+3*10-5/2

e postorder leads to postfix notation:
43+105-*2/

The iterator concept fits nicely with tree traversals, batsithe code for the iterators in the text is
somewhat complex, so we will first consider traversals withterators.

In our first traversal examples, we will build a small binarget of | nt eger values and call
methods that perform the traversal. Here, “visiting” a tneele involves passing its value to the
methodpr ocess.

See Example:
/ home/ cs501/ exanpl es/ BTTr aversal s

First, note the construction of the tree. We build the treenfbbottom up, but do not store the
subtrees in local variables during construction — we singplystruct them in the parameters of the
constructor for the next level up.

Now, consider each of the traversal implementations. Thader, preorder, and postorder traver-
sls work exactly as we would expect. Each is recursive, andisiethe subtrees and the root node
as defined for each ordering.

The level-order traversal is a bit trickier. We need to Vik# root of each subtree before doing
anything in the next level. This calls for a queue!

For all of the others, we used a stack, just without thinkibgud it. We took advantage of the call
stack to support the recursion!

Tree Iterators

The structure package has implementations of iteratoessioh of these four traversals. Whereas in
thedo{pr e, post, i n}or der methods above, we were able to take advantage of the corisputer
run-time stack, we need to have a stack explicitly declaneldsed in the iterator implementations.

6

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

The complexity of the iterators varies with the type of tnsad.

We need to make sure we get things onto the stack (or queuse tase of the level order) in the
right order.

At any time, we want the stack/queue to contain the tree nttdestill need to be visited.
Visiting a non-leaf node will result in additional nodesmgiadded to the stack/queue.
In all cases, iteration can continue as long as somethingirenon the stack/queue.

We will consider this example tree:

In each case, recall that we need to satisfy the iteratarfatte (actually, thébst ract | t er at or
in structure) by providing:

. aconstructor

. ar eset method

1
2
3. ahasNext method
4. anext method

5

. aget method

We look at each in turn.

See Structure Source:
/ honme/ cs501/ src/ structure5/ BTPreorderlterator.java

Our preorder traversal visits the root first, followed by kb subtree, then the right subtree.

Recall that we implicitly used the run-time stack for the ntmator traversal code. Here, we
manage the stack.

At any point, we want the tree node on the top of the stack thhé@éxt tree node that needs to be
visited.

We want to visit the root, then the left subtree, then thetragiitree.

So to start or reset our iteration, we initialize the stacthwe root node.

7

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

A next operation justinvolves popping, then processing the nodewof the stack, then pushing
its right and left subtrees (in that order, since we want txess the left first).

Finally, we can implemerttasNext by just checking if the stack is empty, which will tell is that
the traversal has been completed.

See Structure Source:
/ honme/ ¢cs501/ src/ structure5/ BTl norderlterator.java

For this traversal, we need to visit the left subtree, therrdot, then the right subtree.

Here, the first thing we want to visit is the deepest, leftnobdtd. So we need to initialize the state
of our iterator so that that node (the deepest, leftmostiislon top of the stack. To do this, we
push the root, and all of the left subtrees until we come todenehich doesn’t have a left subtree.

A next operation here involves popping the top value off the stadie returned, then dealing
with its right subtree. The first thing there that needs tgieags again its leftmost branch, so we
need to push the right subtree then all of its left children.

See Structure Source:
/ home/ ¢s501/ src/ structure5/ BTPostorderlterator.java

Here, we visit the left subtree, then the right subtree, amallfi the root.

This is the tricky one. First, if there is a left subtree, weado push down through those left
subtrees as far as we can. If any node has no left subtree $atright subtree, push that instead.
Continue to a leaf.

A next operation involves popping the top value to be returnedhdfthing we just popped is a
left child, push the sibling and its left children (or righhen there is no left) until we get to a leaf
again.

See Structure Source:
/ home/ cs501/ src/ structureb/ BTLevel orderlterator.java

Here, we visit the tree level by level.

This one is actually quite easy. We have a queue instead atk. st
We start by enqueueing the root, as this is the first thing wet teavisit.
When we visit a node, we enqueue its children.

TheBTTr aver sal s example also demonstrates the use of these iterators.

Example Application: Huffman Compression
We will now briefly consider greedy algorithntoncerned with the generation of encodings.

The problem oftodingis assignment of bit strings to alphabet charact@sdewordsare the bit
strings assigned for characters of alphabet.

We can categorize codes as one of:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

1. fixed-length encodinge.g, ASCII)

2. variable-length encodin@e.g, Morse code)

The idea here is to reduce the amount of space needed to stsnegaof characters. Usually, we
store characters with 8 bits each, meaning we can store 2ipta256 different characters.

However, many strings don’t use that many different charactlf we had a string that used only
12 unique characters, we could define patterns of 4 bits ea@ptesent them and save half of the
space.

The idea behind variable length encoding is that we can dolestter if we use short strings of bits
to represent frequently seen characters and infrequeracieas with longer strings. This results
in a smaller total number of bits needed to encode a message.

To do this, we need to come up with a code and a way to trangatento code and then back
again.

But...these variable length codes introduce a problem cli eaaracter’s code can have a different
length, how do we know when the code for one character hagdeartbthe next has begun?

In Morse code, how can we tell the if the sequence “dot dash’daisupposed to represent “AT”,
“ETT”, “EM” or just the one character “W"?

This is possible because Morse code is not a binary code atitlloes have dots and dashes
(which are one and three time units, respectively, of thexdhubut it also has pauses of varying

length to separate the individual dots and dashes (a pefrgittnce equal in duration to the sound

of a “dot”), to separate letters (silence for the duratioraafash), and to separate words (silence
for the duration of 7 dots).

A strictly binary code cannot have these other “markers’ejpasate letters or words. Therefore,
we would construct arefix-free codeone where no codeword is a prefix of another codeword.

This leads to an interesting problem: if the frequenciehefaharacter occurrences for the string
to be encoded are known, what is the best binary prefix-frdezo

Consider this procedure to generate a translation systeswrkas aHuffman coding

Count the number of each character in the string to represghtceeate a single-node binary
tree with that character and its count as the value. Repgaizkd the smallest two trees in the
collection and combine them to a new tree which has the tvwestas subtrees and label the root
with the sum of their counts. Continue combining trees (bbéhdriginal one-element trees and
the trees created) in this manner until a single tree remains

Consider the phrase:

no... try not... do... or donot... there is no try...

We count the letters up:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

n=4, 0=7, .=15,=10, t=5, r=4, y=2, d=2, h=1, e=2, i=1, s=1
and build the tree.
Once we have that, we can use it to construct our encoded (essgtl) string.

To decode, we just trace the bit patterns through the tree n\Wileeencounter a leaf, we know the
next letter. We then start tracing at the root again.

Note that the construction is a greedy procedure: we singklg the tree from our collection that
has the smallest number of characters represented.

10

