
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Trees

We’ve spent a lot of time looking at a variety oflinear structures. There was a natural linear
ordering of the elements in arrays, vectors, linked lists. We then put some restrictions on those
structures, looking at stacks and queues and ordered linearstructures.

Just like we can write programs that can branch into a number of directions, we can design struc-
tures that have branches.

Today, we’ll start looking at our first more complicated structure: trees.

In a linear structure, every element has unique successor.

In trees, an element may have many successors.

We usually draw trees upside-down in computer science.

You won’t see trees in nature that grow with their roots at thetop (but you can see some at Mass
MoCA).

Examples of Trees

Expression trees

One example of a tree is anexpression tree:

The expression

(2*(4-1))+((2+7)/3)

can be represented as

+

* /

2 - + 3

4 1 2 7



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, thenperform the operation at root. The
evaluation of subtrees is recursive.

Tournament Brackets

Another example is a tree representing a tournament bracket:

1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11

1 8 4 5 2 7 3 6

3241

1

1

2

(acompleteandfull tree)

or

1 8 9 4 5 12 2 7 10 3 6 11

1 8 4 5 2 7 3 6

3241

1

1

2

(neither complete nor full)

Tree of Descendants

The text looks at an example of a pedigree chart – looking at a person’s ancestors. Instead, we can
look at a person’s descendants. (Example drawn in class).

Definitions and Terminology
There are a lot of terms we will likely encounter when dealingwith tree structures:

A tree is either empty or consists of anode, called theroot node, together with a collection of
(disjoint) trees, called itssubtrees.

2



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

• An edgeconnects a node to its subtrees

• The roots of the subtrees of a node are said to be thechildrenof the node.

• There may be many nodes without any successors: These are called leavesor leaf nodes.
The others are calledinterior nodes.

• All nodes except root have unique predecessor, orparent.

• A collection of trees is called aforest.

Other terms are borrowed from the family tree analogy:

• sibling, ancestor, descendant

Some other terms we’ll use:

• A simple pathis series of distinct nodes such that there is an edge betweeneach pair of
successive nodes.

• Thepath lengthis the number of edges traversed in a path (equal to the numberof nodes on
the path - 1)

• Theheight of a nodeis length of the longest path from that node to a leaf.

• Theheight of the treeis the height of its root node.

• Thedepth of a nodeis the length of the path from the root to that node.

• Thedegree of a nodeis number of its direct descendents.

• The idea of thelevelof a node defined recursively:

– The root is at level 0.

– The level of any other node is one greater than the level of itsparent.

Equivalently, the level of a node is the length of a path from the root to that node.

We will limit our initial discussion tobinary trees– trees whose nodes are all have degree≤ 2.

We will also orient the trees: each subtree of a node is definedas being either theleft or right.

Binary Tree Interface
There are many possible specifications of binary trees that allow reasonable insertion and deletion
of elements.

3



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We will consider the one provided in the structure package first, and think about other possibilities
later.

Unlike what we have seen to this point, the structure packagedoes not define an interface for binary
trees and then use implement that in one or more concrete classes. Structure simply implements
classBinaryTree, so we will look right at that.

Unlike the linked list implementations, where we do not givethe users of the structures access to
the actual list nodes, the binary tree exposes more of its structure to users. The actual recursive data
structure is given directly to users. The implementation needs to ensure that changes that might be
made by users cannot render a tree invalid.

The tree is constructed of instances of classBinaryTree. EachBinaryTree object has the
fields it needs to store its value and the parent and child references.

See Structure Source:
/home/cs501/src/structure5/BinaryTree.java

A node has 4 fields, which we might draw as follows:

right

parent
val

left

Plenty of things to notice and think about here:

• We have three constructors.

1. The first is used to create an “empty”BinaryTree. We will see this constructor
used by the other constructors to create these empty trees inplace of havingnull
references to represent empty subtrees. This allows most methods to be called on these,
eliminating lots of special cases. We could also usenull to represent empty trees, but
this would mean some extra code in several methods. Note thatonly empty tree nodes
may contain anull value. Regular tree nodes must contain non-null values.

2. The second constructor creates a tree node with no children (a leaf node) containing a
particular value.

3. The third constructor creates a tree node that may have children. Note that if a user of
this constructor specifies anull child, it is replaces with an empty tree instance.

• We have accessors to retrieve the children or parent of a node.

• Note that the value and subtree links can be set by the user, but the parent reference is set
only in aprotected method. This is done to make sure we don’t put the tree into a (bad)
state where a parent points to a child but the child doesn’t point back to the parent.

4



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

• We have a variety of other (self-explanatory) methods to retrieve information about a tree:
size, root, height, depth, isFull, isEmpty, isComplete. Note the recursive
nature of many of these methods.

Binary Tree Example

We can construct a simple binary tree to represent and evaluate an arithmetic expression using the
BinaryTree implementation:

((4+3)*(10-5))/2

See Example:
/home/cs501/examples/BinaryExpressionTree

There are two versions of this program:

1. BinaryExpressionTree.java stores the operators and values to be used asStrings.

• This lets us use aBinaryTree<String>.

• Since some are operators and some are numbers, we need to check and treat as appro-
priate, based on the contents of theString.

2. BinaryExpressionTreeObject.java stores the operators asCharacters and the
numbers asIntegers.

• Here we instead use aBinaryTree<Object>, since that’s the type that can repre-
sent both aCharacter and anInteger.

• We check the actual type of the value retrieved with theinstanceof operator and
use the value as appropriate

Another option would be to define a common type along the linesof theTokens from the postscript
lab.

In both cases, note thetreeString method that prints our binary tree in a nice format.

Tree Traversals
Iterating over all values in our linear structures is usually fairly easy. Moreover, one or two order-
ings of the elements are the obvious choices for our iterations. Some structures, like an array or a
Vector, allow us to traverse from the start to the end or from the end back to the start very easily.
A SinglyLinkedList, however, is most efficiently traversed only from the start to the end.

For trees, there is no single obvious ordering. Do we visit the root first, then go down through the
subtrees to the leaves? Do we visit one or both subtrees before visiting the root?

We will consider 4 standardtree traversalsfor our binary trees:

5



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

1. preorder: visit the root, then visit the left subtree, then visit the right subtree.

2. in-order visit the left subtree, then visit the root, then visit the right subtree.

3. postorder: visit the left subtree, then visit the right subtree, then visit the root.

4. level-order: visit the node at level 0 (the root), then visit all nodes at level 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postorder traversals of the expression tree we
looked at in the example code:

• preorder leads to prefix notation:
/ * + 4 3 - 10 5 2

• in-order leads to infix notation:
4 + 3 * 10 - 5 / 2

• postorder leads to postfix notation:
4 3 + 10 5 - * 2 /

The iterator concept fits nicely with tree traversals, but since the code for the iterators in the text is
somewhat complex, so we will first consider traversals without iterators.

In our first traversal examples, we will build a small binary tree ofInteger values and call
methods that perform the traversal. Here, “visiting” a treenode involves passing its value to the
methodprocess.

See Example:
/home/cs501/examples/BTTraversals

First, note the construction of the tree. We build the tree from bottom up, but do not store the
subtrees in local variables during construction – we simplyconstruct them in the parameters of the
constructor for the next level up.

Now, consider each of the traversal implementations. The in-order, preorder, and postorder traver-
sls work exactly as we would expect. Each is recursive, and wevisit the subtrees and the root node
as defined for each ordering.

The level-order traversal is a bit trickier. We need to visitthe root of each subtree before doing
anything in the next level. This calls for a queue!

For all of the others, we used a stack, just without thinking about it. We took advantage of the call
stack to support the recursion!

Tree Iterators

The structure package has implementations of iterators foreach of these four traversals. Whereas in
thedo{pre,post,in}ordermethods above, we were able to take advantage of the computer’s
run-time stack, we need to have a stack explicitly declared and used in the iterator implementations.

6



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

The complexity of the iterators varies with the type of traversal.

We need to make sure we get things onto the stack (or queue, in the case of the level order) in the
right order.

At any time, we want the stack/queue to contain the tree nodesthat still need to be visited.

Visiting a non-leaf node will result in additional nodes being added to the stack/queue.

In all cases, iteration can continue as long as something remains on the stack/queue.

We will consider this example tree:

1 8

107

9

5

4

2

3

6

In each case, recall that we need to satisfy the iterator interface (actually, theAbstractIterator
in structure) by providing:

1. a constructor

2. areset method

3. ahasNext method

4. anext method

5. aget method

We look at each in turn.

See Structure Source:
/home/cs501/src/structure5/BTPreorderIterator.java

Our preorder traversal visits the root first, followed by theleft subtree, then the right subtree.

Recall that we implicitly used the run-time stack for the non-iterator traversal code. Here, we
manage the stack.

At any point, we want the tree node on the top of the stack to be the next tree node that needs to be
visited.

We want to visit the root, then the left subtree, then the right subtree.

So to start or reset our iteration, we initialize the stack with the root node.

7



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

A next operation just involves popping, then processing the node on top of the stack, then pushing
its right and left subtrees (in that order, since we want to process the left first).

Finally, we can implementhasNext by just checking if the stack is empty, which will tell is that
the traversal has been completed.

See Structure Source:
/home/cs501/src/structure5/BTInorderIterator.java

For this traversal, we need to visit the left subtree, then the root, then the right subtree.

Here, the first thing we want to visit is the deepest, leftmostchild. So we need to initialize the state
of our iterator so that that node (the deepest, leftmost child) is on top of the stack. To do this, we
push the root, and all of the left subtrees until we come to a node which doesn’t have a left subtree.

A next operation here involves popping the top value off the stack to be returned, then dealing
with its right subtree. The first thing there that needs to happen is again its leftmost branch, so we
need to push the right subtree then all of its left children.

See Structure Source:
/home/cs501/src/structure5/BTPostorderIterator.java

Here, we visit the left subtree, then the right subtree, and finally the root.

This is the tricky one. First, if there is a left subtree, we need to push down through those left
subtrees as far as we can. If any node has no left subtree but has a right subtree, push that instead.
Continue to a leaf.

A next operation involves popping the top value to be returned. If the thing we just popped is a
left child, push the sibling and its left children (or right when there is no left) until we get to a leaf
again.

See Structure Source:
/home/cs501/src/structure5/BTLevelorderIterator.java

Here, we visit the tree level by level.

This one is actually quite easy. We have a queue instead of a stack.

We start by enqueueing the root, as this is the first thing we want to visit.

When we visit a node, we enqueue its children.

TheBTTraversals example also demonstrates the use of these iterators.

Example Application: Huffman Compression
We will now briefly consider agreedy algorithmconcerned with the generation of encodings.

The problem ofcoding is assignment of bit strings to alphabet characters.Codewordsare the bit
strings assigned for characters of alphabet.

We can categorize codes as one of:

8



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

1. fixed-length encoding(e.g., ASCII)

2. variable-length encoding(e.g., Morse code)

The idea here is to reduce the amount of space needed to store astring of characters. Usually, we
store characters with 8 bits each, meaning we can store up to2

8
= 256 different characters.

However, many strings don’t use that many different characters. If we had a string that used only
12 unique characters, we could define patterns of 4 bits each to represent them and save half of the
space.

The idea behind variable length encoding is that we can do even better if we use short strings of bits
to represent frequently seen characters and infrequent characters with longer strings. This results
in a smaller total number of bits needed to encode a message.

To do this, we need to come up with a code and a way to translate text into code and then back
again.

But...these variable length codes introduce a problem. If each character’s code can have a different
length, how do we know when the code for one character has ended and the next has begun?

In Morse code, how can we tell the if the sequence “dot dash dash” is supposed to represent “AT”,
“ETT”, “EM” or just the one character “W”?

This is possible because Morse code is not a binary code at all– it does have dots and dashes
(which are one and three time units, respectively, of the sound), but it also has pauses of varying
length to separate the individual dots and dashes (a period of silence equal in duration to the sound
of a “dot”), to separate letters (silence for the duration ofa dash), and to separate words (silence
for the duration of 7 dots).

A strictly binary code cannot have these other “markers” to separate letters or words. Therefore,
we would construct aprefix-free code, one where no codeword is a prefix of another codeword.

This leads to an interesting problem: if the frequencies of the character occurrences for the string
to be encoded are known, what is the best binary prefix-free code?

Consider this procedure to generate a translation system, known as aHuffman coding.

Count the number of each character in the string to represent and create a single-node binary
tree with that character and its count as the value. Repeatedly take the smallest two trees in the
collection and combine them to a new tree which has the two trees as subtrees and label the root
with the sum of their counts. Continue combining trees (both the original one-element trees and
the trees created) in this manner until a single tree remains.

Consider the phrase:

no... try not... do... or do not... there is no try...

We count the letters up:

9



CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

n=4, o=7, .=15,=10, t=5, r=4, y=2, d=2, h=1, e=2, i=1, s=1

and build the tree.

Once we have that, we can use it to construct our encoded (compressed) string.

To decode, we just trace the bit patterns through the tree. When we encounter a leaf, we know the
next letter. We then start tracing at the root again.

Note that the construction is a greedy procedure: we simply take the tree from our collection that
has the smallest number of characters represented.

10


