Computer Science 501

Data Structures & Algorithms
The College of Saint Rose
Fall 2013

Topic Notes: Priority Queues and Heaps
Before we discuss priority queues, recall the following texeninology and properties:

¢ A full binary tree of heighk has all leaves on levél.

A complete binary tree of height: is obtained from a full binary tree of heightwith 0 or
more (but not all) of the rightmost leaves at lealemoved.

We sayT' is balanced if it has the minimum possible height for its number of nodes.

Lemma: If T is a binary tree, then at levé| T has< 2* nodes.

Theorem: If T has height, thenn = num nodes irt” < 2"+! — 1. Equivalently, ifT hasn
nodes, them — 1 > h > log(n + 1) — 1.

Array representations of trees

Our representation of the tree:

actually looks like this:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Ulef, [Islele] [Tlz]el\] [*]w]e]e]
"lafele] [*]s]e]e] | [sle]e]

|Z =null reference

=reference to unique EMPTY tree |Z|Z
4

That’s a lot of extra references to parents and childrentamanpty nodes. So to store 10 actual
data values, we need space for 40 references plus the 4 thatupahe empty tree instances.

The following array contains exactly the same information:

o 1 2 3 4 5 6 /7 8 9 10 11 12 13 14

492571013/|/|/|8/|/|

The arraydat a[0. . n- 1], holds the values to be stored in the tree. It does not coetqihicit
references to the left or right subtrees or to parents.

Instead the children of nodeare stored in positiorg* i + 1 and2 = i + 2, and therefore the parent
of a nodej, may be found atj — 1)/2

This lets us save space for links, but it is possible thaktieea significant waste of storage:

Storing a tree of height requires an array of length*+t?) — 1 (1), even if the tree only has
Theta(n) elements. This makes this representation very expensiyeuifhave a long, skinny
tree. However, it is very efficient for holding full or compéetrees. For our example, we need 15
references to hold a tree of 10 items, compared to 40 for thedonstructed binary tree.

Heaps and Priority Queues
From here, we will look at some ways that trees are used ir sthectures.

First, we’'ll consider a structure that seems somewhat likeordered structures and somewhat like
a queue:

A priority queueis a structure where the contents are comparable elemehth@elements with
“small” (or “large”) values are removed before elementdwiarger” (or “smaller”) values.

Waiting at a restaurant can be a priority queue — you get @it people who are regular cus-
tomers or who give a tip to the host or hostess may move aheaaliah line.

2

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

This could happen at a hospital emergency room. The ordethiohapatients are seen is not
strictly based on order of arrival but on the severity of tleeindition.

Same idea when airports are backed up. Planes will get ifdingheir turn on the runway, but
scheduling concerns or fuel issues or whatever else mag cgiaand control to give a plane which
“gotin line” later a higher priority and move them up.

An operating system may be scheduling processes that angetiog to use the CPU in a multi-
programmed system. The next process may be selected basee lmghest prioirty process that
is seeking a turn on the CPU.

We can define an interface for priority queues that definedhewing operations:

See Structure Source:
/ home/ ¢s501/ src/ structure5/PriorityQueue.java

Note that we are restricting tGonpar abl e elements, but as in the past, we could develop a
version that takes @onpar at or as an argument to any constructors that could organizetsbjec
of any type in the PQ.

Much like stacks and traditional queues, we only need to defisingleadd andr enove method.
We can add any element at any time, but we can only ever examimenove the smallest item.

One can implement a priority queue sort of like a regular guéut where either you work harder
to insert or to remove an elememi(, store in priority order — maintain a sorted internal stoetu
or search each time to remove lowest priority elements).

An example of this:

See Structure Source:
/ honme/ cs501/ src/ structureb/PriorityVector.java

Unfortunately, in these cases either adding or deletindement will beT'heta(n). (Which one
is Theta(n) depends on which of the two schemes is adopted!)

But... we can do better. Using the observation that we dorétdrte keep the entire structure
ordered — at any time we only need quick access to the smalesent — we can provide a more
efficient implementation using a structure calledhesp.

Recall that a complete binary tree is one in which every levélil except possibly the bottom
level and that level has all leaves in the leftmost positigN®te that this is more restrictive than a
balanced tree.)

Definition: A Min-Heap H is a complete binary tree such that

1. H is empty, or

2. (a) The root value is the smallest valuefinand
(b) The left and right subtrees &f are also heaps

This is equivalent to saying th&f i] <= H 2+*i +1],andH i] <= H[2xi +2] for all ap-
propriate values of in the array representation of trees.

3

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We could just as well implement iax-Heap — just reverse all of our comparisons. The text in
fact does talk about max heaps.

In either case, it often makes sense to use the draydyLi st /Vect or representation of binary
trees here, since the tree is also guaranteed to be comptetaere will never be empty slots
wasting space.

Another way of looking at Min-Heap is that any path from a leathe root is in non-ascending

order.

Note that there are lots of possible Min-Heaps that wouldtaianthe same set of values. At
each node, the subtrees are interchangeable (other theawhnch have different heights, strictly
speaking).

In a Min-heap, we know that the smallest value is at the réwetsecond smallest is a child of the
root, the third smallest is a child of the first or second sest)land so on.

This turns out to be exactly what is needed to implement aipriqueue.

We need to be able to maintain a Min-Heap, and when elemesnt&daled or the smallest value is
removed, we want to “re-heapify” the structure as efficieat possible.

Inserting into a Heap

1. Place number to be inserted at the next free position.
2. "Percolate” it up to correct position.

Deleting the Root from a Heap

1. Save value in root element for return (it's the smallegt)on
2. Move last element to root

3. Push down (or “sift”) the element now in the root positidinwas formerly the last
element) to its correct position by repeatedly swappingithhe smaller of its two
children.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

Notice how these heap operations implement a priority queue

When you add a new element in a priority queue, copy it into the fiee position of the heap and
sift it up into its proper position.

When you remove the next element from the priority queue, wentioe element from the root of
heap (first elt, since it has lowest number for priority), mdkie last element up to the first slot,
and then sift it down.

The implementation of this in structure:

See Structure Sour ce:
/ home/ cs501/ src/ structureb/ Vect or Heap. j ava

Vect or Heap uses aVect or as its internal storage and provides the interface requwed
PriorityQueue.

Since we use the array/vector representation of binarg tkge can make much of the code more
readable (and tree-like) if we have sopreot ect ed helper methods to get the parent and children
of the node represented by a given position.

We can easily get the next value to be returned — it is alwagssition 0 in the/ect or (assuming
there’s anything at all in thgect or).

Removing an element involves getting the smallest, remoitifrpm the start of the array, and
“heapifying” the remaining values. As we did in the exammle, remove the first value, move up
the last value to that first position, and “sift” it down to didgposition.

Once you've dealt with theenove, anadd is pretty straightforward. Just put it at the end of the
Vect or and “percolate” it up to restore the heap condition.

How expensive arper col at eUp andpushDownRoot ?

Each is©(logn), as we can, at worst, traverse the height of the tree. Siredréle is always
complete, we know its height is always at magin. This is much better than storing the priority
gueue as regular queue and inserting new elements intatitgoosition in the queue and removing
them from the front.

Sorting with a Heap (HeapSort)

The priority queue suggests an approach to sorting datae Haven values to sort, we can add
them all to the priority queue, then remove them all, and ttwye out in order. We're done.

What is the cost of this? If we use the naive priority queue enmntations (completely sorted
or completely unsorted internal data, making either adéprave©(n) and the othe©(1)), we
need, at some point, to do@(n) operation for each of. elements, making an overall sorting
procedure oB(n?). That's not very exciting — we had that with a bubble sort.

But what about using the heap-based priority queues?

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We can build a heap from a collection of objects by adding tloewn after the other. Each takes
at mostT'heta(logn) to insert and “percolate up” for a total time Bheta(nlogn) to “heapify” a
collection of numbers. That's actually the cost of the ensiorting procedure for merge sort and
quicksort, and here, we've only achieved a heap, not a settadture. But we continue..

Once the heap is established, we remove elements one at,gptitiag smallest at end, second
smallest next to end, etc. This is agaisteps, each of which is at most @heta(log n) operation.

So we have an overall cost 6fheta(nlogn), just like our other good sorting procedures.

We can actually do a little better on the “heapify” part. Colesithis example, which | will draw
as a tree, but we should remember that it will really just alliban array or air r ayLi st .

We want to heapify. Note that we already have 4 heaps — thedeav

We can make this 2 heaps by “sifting down” the two level 1 nodes

Then finally, we sift down the root to get a single heap:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

How expensive was this operation, really?

We only needed to do the “push down root” operation on abdfitiithe elements. But that's still
Theta(n) operations, each costirigheta(logn).

The key is that we only perform “push down root” on the firstflodithe elements of the array.

That is, no “push down root” operations are needed corraipgrno leaves of the tree (corre-
sponding toj of the elements).

For those elements sitting just above the leavesf(the elements), we only go through the loop
once (and thus we make only two comparisons of priorities).

For those in the next layeg (of the elements) we only go through the loop twice (4 compas,
and so on.

Thus we make

2% () +4% (2) 46 (55) -+ 2% (log) * (1)
total comparisons.
Since2'°e™ = n, we can rewrite the last term to fit in nicely:

n

8

)+6*(£)+~--+2*(10gn)*(

n
— 4
2*(4)—1— * (16

n
210gn)

We can factor out the, multiply in the 2 (to reduce each denominator by 2) and puighinto a
more suggestive format:

1 2 3 logn
T TR T E T Qe

The sum inside the parentheses can be rewritten as

This is clearly bounded above by the infinite sum,

i i
o2
Let’s see if we can evaluate this infinite sum:

S
248" 16

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

We can rewrite this in a triangular form to be able to use somksto get the sum:

2 4 8 16 N
1+1+1+ 1
4 8 16 2
[|
8 16 4
1+ 1
16 8
1
16
2
Thus . 5 5 |
ogn
n*(§+§+§+---+2logn)<:2n

and hence the time to heapify an arrayor ayLi st , in place, iSO (n).

The second phase, removing each successive elemenggtiltes: removes, each of which will
involve a©(log n) heapify.

We can, however, do this in place in our arraydor ayLi st , by swapping each element removed
from the heap into the last position in the heap and calliegtbap one item smaller at each step.

()
(2) ()
ONONONO

And then we do a sift down of the root (which just came up froml#st position):

()
(2) (%)
& © ® ®

Then the next item (19) comes out of the heap by swapping atteasst position, and we sift down
the 25:

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

ONONONO

And the process continues until there is no more heap.

The entire process of extracting elements in sorted ordefriidog n).
Therefore, the total time i®©(n logn).

Plus, there’s no extra space needed!

Note that using a Min-Heap, we end up with the array sortecestending order. If we want to
sort in ascending order, we will need a Max-Heap.

So we have a new efficient sorting procedure to add to our aksen

Heapsort | mplementation
We can develop a method to perform a heap sort on an arr@grgbar abl e elements.

See Example:
/ home/ cs501/ exanpl es/ Sorti ngConpari sons/ HeapSort. | ava

All of the comparisons and most swapping happens iptlehDownRoot method, which is very
similar to thepushDownRoot method ofVect or Heap.

Skew Heaps

The heaps we have considered so far are all required to lstocomplete binary trees. A heap
can also be stored in binary trees of other shapes. The saméhe®p conditions hold: the root
contains the smallest element and each subtree is a heap.

We can define akew heap using ourBi nar yTr ee implementation. The skew heap itself main-
tains a reference to the root of the tree and a count (for coeree).

Unlike with theVect or -based, complete heaps, we do not have quick access to #teéla-
ment that we used for owmdd andr enove methods there. So those methods are approached
differently.

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

add is accomplished by taking the existing skew heap and a new Bkap consisting of the new
element, and “merging” them.

renove is done by taking away the root, and merging the two childrehich are each skew
heaps) into a new skew heap.

So we just need an efficient way to merge two skew heaps intaveone, and we’ll be able to
write add andr enove easily.

The more general case comes up withitleerove method, when we need to merge two arbitrary
skew heaps. Consider removing from the example above. Tdisseus with two skew heaps:

If either of our skew heaps has an empty child, we can easdiwligh the merge.

We will not look in detail at skew heaps in class, but you caadrurther about them in the text
and see the implementation:

See Structure Source:
/ home/ ¢s501/ src/ struct ureb5/ SkewHeap. j ava

10

