Computer Science 501

Data Structures & Algorithms
The College of Saint Rose

Fall 2013

Topic Notes: Iterators

Interfaces and Abstract classes

Before we discuskt er at or s, we need to think about the design of abstract data types/an J
So far, we have seen interfaces and regular classes. Tleeris between these called avstract
class.

The abstractions provided by interfaces and abstractedasm® important for the development of
reusable and modular software.

We want to be able to definghat an abstract data type does without committingpda it does it.

The biggest example we've seen so far et or . As the user of &ect or , we know we can
create them, add, retrieve, remove, and modify elementsemtand query information like their
size. All of these are independent of how Wect or is implemented.

This separation of the public interface from the implemgateallows programmers to make use of
Vect or s without needing to know how things work on the inside. loalows the implementers
of Vect or s to make internal changes without affecting other code ukeas it, so long as the
public interface does not change.

Java has language constructs to support the developmelnstohet data types.

¢ Interfaces describe the public functionality of an abstract data tyfigs includes:

— method signatures
— constants

Ani nt er f ace mayext end anothei nt er f ace.
We have seen and usedt er f aces including things lik&Conpar at or s andConpar abl es.

e Abstract base classes describe a partial implementation. Abst r act class can define
method bodies for some of the methods required biyer f aces iti npl enent s.

This can be useful for:

— methods that can be implemented in terms of other methods

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

It is possible for a class that extendsamst r act class to override methods defined in the
abstract class, in case there is a more efficient way to do some of thésgstwhen an
actual implementation is developed.

A frequent use of ambst r act class is to “factor out” implementation of methods that
happen to be the same for multiple implementations of amfade.

e Full implementations (classes that you can instantiatejy mgpl enent i nt er f aces,
and/orext end exactly oneabst r act or fully implemented class.

We will see many examples using interfaces and abstragedablroughout the rest of the course.

The text has examples using “generators” and the designaying card classes to motivate
i nterfacesandabstract classes, and | encourage you to read them.

However, we consider them in the context afer at or s.

Ilterators

How do we *“visit” each item in a collection? With\&ect or , or an array, it's easy. We can write
af or loop:

public <T> void traverse(Vector<T> v) {
int i;

for (i=0; i<v.size(); i++) {
T visitme = v.get(i);
/1l do something with visitne

}
}

But imagine if someone has changed the implementatioveat or . It no longer has an array,
but a linked structure.

We will study linked lists very soon, but for now, just notitteat to get access to thé" element,
we need to visit the first — 1 elements. If ouMect or contained one of these linked structures
instead of an array, our traverse method suddenly beconmg@edficient.

This is not good. What is the complexity gét () ? In order to get the item at positiopwe have
to start at the beginning and we have to follow links until welfthe right element.

What we want to do is to use the previous value returned, aredttekone pointed to by the list
element we just used to get that previous value. But how? W& klave that information!

We often need a way of cycling through all of the elements oftadtructure. Java and the
structure package provide exactly what we ngeatva. uti | . | t er at or <E>

A data structure can create an object of typeer at or , which can be used to cycle through the
elements. For example, built-in Java claest or has method:

2

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

public Iterator<E> iterator()
that we can print out the elements\éct or <E> v as follows:

for (lterator<bE> iter=v.iterator(); iter.hasNext();)
Systemout.printin(iter.next());

OrinJava 5 and up, if our class implements ther abl e i nt er f ace (which simply requires
the method t er at or) we can use a “for each” loop:

for (Eitem v) {
Systemout.println(item;

}
See Example:
/ homre/ cs501/ exanpl es/ | t er abl es
Important Notes:
e Never change the state of a data structure with an activesyorkyou may end up in an
infinite loop!

e There is also aenove() methos in Java’st er at or interface, but we will ignore that
for now, as not all iterators provide it.

e | t er at or s guarantee a predictable and consistent order of the etemetuarned.
The structure package defines an abstract class adltletlr act | t er at or thati npl enent s
bothj ava. uti | . Enuner at i on (an older, iterator-like interface) apcva. util . It erat or.

Notes aboufAbstract | terators:

e it adds two methods that are not part of either enumeratioiterators in Java:

— reset () — start the iteration over without constructing a brand héwr at or
— get () —retrieve the “current value” without advancing thieer at or

Both of these are declared abst r act methods, meaning that they are essentially adding
to thei nt er f ace defined by thedbst r act | t er at or without defining them.

e TheAbstract!terator also providesmplementations of the two methods required by
enumeration. The fact that these are implemented is whairescthat we declare this as an
abstract class rather than just anothient er f ace. Note that these are also declared
asfinal meaning that classes that extend this class may not ovetree definitions.
This ensures that thenuner at i on andl t er at or methods of any class thakt ends
Abstract|terator mustbe identical.

3

CSC 501 Data Stuctures and Algorithm Analysis Fall 2013

The data structures in the structure package typicallymetoAbst r act | t er at or rather than
ajava.util.lterator.

See Structure Source:
/ home/ cs501/ src/ structureb/ Vectorlterator.java

See Example:
/ homre/ cs501/ exanpl es/Iterators

In our next lab, you will develop an unusual kind lof er at or — one that is iterating over a
collection of values that doesn’t actually exist!

