
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Program/Problem Set 3: Tokenizer for Little C
Due: 11:59 PM, Monday, September 22, 2014

For this assignment, you will be implementing a tokenizer (i.e., lexical analyzer) in C for a lan-
guage calledlC (little C). You will later be using this tokenizer as the first stage in a larger program
that will perform a full syntax analysis (i.e., parse) alC program.

The tokenizer, and especially the parser to come, are quite complex programs. Even though the
quantity of code you will write is only on the order of a couplehundred lines, it will take some
thought and planning. As such, you are encouraged to form groups of 2 or 3 for this assignment
and the next.

You can find and run the executable for my solution code for this program onmogul.strose.edu
in /home/cs433/probsets/tokenizer/ .

The lC Language

lC is a smaller, simpler version of the C programming language.Several familiar C features, such
as arrays and functions (other thanmain) are not present inlC, but sincelC is a proper subset of
C, anylC program should compile correctly with a C compiler.

We describe the language with BNF rules (taken fromC: A Reference Manual, by Harbison and
Steele, Jr.,4th Edition, Tartan Inc., 1995, with revisions).

• [] denotes an optional part (there are no[] brackets in this language)

• the top level (i.e., root, or starting) production of the language is<program>

<add-op> ::= + | -

<additive-expression> ::= <multiplicative-expression> [<add-op> <additive-expression>]

<assignment-expression> ::= IDENT = <conditional-expression>

<compound-statement> ::= { [<declaration-list>] [<statement-list>] }

<conditional-expression> ::= <logical-or-expression>

<conditional-statement> ::= if (<conditional-expression>) <statement> [else <statement>]

<constant> ::= INT_LIT | FLOAT_LIT

<declaration> ::= <type-specifier> <initialized-declarator-list> ;

<declaration-list> ::= <declaration> [<declaration-list>]

CSC 433 Programming Languages Fall 2014

<equality-op> ::= == | !=

<equality-expression> ::= <relational-expression> [<equality-op> <equality-expression>]

<expression-statement> ::= <assignment-expression> ;

<floating-type-specifier> ::= float

<for-statement> ::= for <for-expressions> <statement>

<for-expressions> ::= (<assignment-expression> ; <conditional-expression> ; <assignment-expression>)

<initialized-declarator-list> ::= IDENT [, <initialized-declarator-list>]

<integer-type-specifier> ::= int

<iterative-statement> ::= <while-statement> | <for-statement>

<logical-and-expression> ::= <equality-expression> [&& <logical-and-expression>]

<logical-or-expression> ::= <logical-and-expression> [|| <logical-or-expression>]

<multiplicative-expression> ::= <primary-expression> [<mult-op> <multiplicative-expression>]

<mult-op> ::= * | / | %

<null-statement> ::= ;

<parenthesized-expression> ::= (<conditional-expression>)

<primary-expression> ::= IDENT | <constant>
| <parenthesized-expression>

<program> ::= void main () <compound-statement>

<relational-expression> ::= <additive-expression> [<relational-op> <relational-expression>]

<relational-op> ::= < | <= | > | >=

<statement> ::= <expression-statement> | <compound-statement>
| <conditional-statement> | <iterative-statement>
| <null-statement>

<statement-list> ::= <statement> [<statement-list>]

<type-specifier> ::= <floating-type-specifier> | <integer-type-specifier>

<while-statement> ::= while (<conditional-expression>) <statement>

In the above, you will identify several types of operators and other punctuation, as well as several
keywords. Your tokenizer should match each of these with a unique token.

There are three token types which can match a variety of lexemes:IDENT,INT LIT, andFLOAT -
LIT. An IDENT is a lexeme that begins with a letter or underscore, and is followed by 0 or more
letters, numbers, and underscores. AnINT LIT consists exclusively of a sequence of numbers.
A FLOAT LIT consists of a sequence of 0 or more digits, followed by a decimal point, followed
by a sequence of 0 or more digits, with the restriction that there must be at least one digit before
or after the decimal point. Note that we specifically disallow negativeINT LIT andFLOAT LIT
values.

Tokenizer Requirements

2

CSC 433 Programming Languages Fall 2014

Your tasks are

1. Write a C programtokenizer.c that takes as its input a single command-line parameter,
the name of a file that contains alC program. It should follow the model of the “front”
example from the text and in class in how it scans the input, builds lexemes, and prints out
the tokens and lexemes it finds.

2. Develop at least 3 nontriviallC example programs. These programs should compile with
your favorite C compiler and should, as a group, test all of the token types needed by the
grammar forlC, and all major forms of the tokens whose lexemes vary (IDENT, INT LIT,
FLOAT LIT).

If you use the “front” example as a guide (or better yet as a starting point), you will find that you
need to introduce several new token types and extend thelex function significantly. You will
also need to add a capability to differentiate between identifiers and keywords and thelookup
function will need to be expanded to handle multi-characteroperators.

It does not matter which specific token codes you assign to token types. Just don’t reuse any.
However, you may find it useful to group them as is done in the “front” example, where token
codes that start with 1 are for one category, start with 2 are for operators and punctuation. Perhaps
a separate code grouping for keywords would be appropriate.

Remember that your tokenizer need not be concerned with whether a sequence of tokens is valid
lC code, just whether the tokens themselves are valid and what they are. For example, if your input
consist of

if } (+ * 23.4 while float ;;;;

this would be perfectly fine with the tokenizer. The parser will certainly not be happy, though
(when we get to that part).

A slow and steady approach will be essential here. You will definitely need to ask questions. You
will definitely need to discuss your approach with your partner(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements

Your code should be commented appropriately throughout. Please also include a longer comment
at the top of your program describing your implementation. And, of course, it should include your
name(s).

Your program should compile without warnings usinggcc on mogul when the-Wall flag is
included. This flag turns on extra warnings that will help youavoid some of the pitfalls of C
programming. If you encounter any warnings that you don’t know how to fix, ask!

Include aMakefile that compiles the program with the-Wall flag. ThisMakefile should
produce an executable program calledtokenizer. My Makefile is onmogul.strose.edu
in /home/cs433/probsets/tokenizer/ . Please feel free to use or modify as you see fit.

3

CSC 433 Programming Languages Fall 2014

Bonus Opportunities

You can earn up to 6 points of bonus credit for handling the following (1 point each):

• negativeINT LIT values

• negativeFLOAT LIT values

• octalINT LIT values

• hexadecimalINT LIT values

• e notationINT LIT values

• e notationFLOAT LIT values

Submission

Before 11:59 PM, Monday, September 22, 2014, submit your workfor grading. Create and submit
a single archive file (a.7z or .zip file containing all required files) using Submission Box at
http://sb.teresco.org under assignment “PS3”.

Grading

This assignment will be graded out of 50 points.

Problem Value Score

New character classes and token codes 3
Match new one-character operators and punctuation 5
Match multi-character operators 6
Match integer literals 3
Match floating point literals 3
Match keywords as appropriate tokens 6
Report correct lexemes 4
Command-line parameter for file name 1
Appropriate output format 2
Program documentation 4
Program efficiency, style, and elegance 3
WorkingMakefile 1
3 valid examplelC programs 3
Programs cover all token types 3
Programs cover all major cases forIDENT, INT LIT, FLOAT LIT 3
Bonus opportunity up to 6

Total 50

4

