
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Program/Problem Set 2: Syntax
Due: 11:59 PM, Monday, September 15, 2014

In this assignment, you will be completing some problems related to syntax, grammars, and parse
trees.

You may work alone or with a partner on these problems. In order to earn full credit, you must
show all of your work for these problems.

Textbook Problems

Question 1:
Problem Set Exercise 12 on p. 164 of Sebesta. (2 points)

Question 2:
Problem Set Exercise 13 on p. 164 of Sebesta. (4 points)

Question 3:
Problem Set Exercise 14 on p. 164 of Sebesta. (4 points)

Question 4:
Problem Set Exercise 20 on p. 165 of Sebesta. (5 points)

Reverse Polish Notation

Reverse Polish notation (RPN) is a common name for postfix mathematical expressions. Such
notation lends itself to a stack-based evaluation and is used by the PostScript printer language and
some old calculators. It has the advantage that it can specify any expression that can be specified
in the usual (infix) notation without the need for parentheses to enforce order of operations.

If we are given an expression in RPN we would evaluate it as follows.

• Start with an empty stack.

• Evaluate the expression from left to right. Each step of the way:

– if a number is encountered, push it onto the stack

CSC 433 Programming Languages Fall 2014

– if an operator is encountered, pop 2 numbers from the stack, apply the operator to those
numbers, push the result onto the stack

• If the expression is valid, there should be a single number left on the stack.

So for the expression

9 7 12 - *

we start with the empty stack. We then push9, push7, push12, so our stack consists of[9 7
12]. We encounter the- operator, pop the12 and the7 from the stack, calculate7 - 12 =
-5 and push the result, giving a stack of[9 -5]. We then encounter the* operator, pop the
-5 and9 from the stack, calculate5 * -9 = -45 and push the result, giving a stack of[-45
]. Now there are no more tokens on the input, so the value at the top of the stack contains our
result,-45.

Question 5:
Evaluate the following RPN expressions or state that it is an invalid RPN expression and why.
Assume integer division rules apply where appropriate. (1/2 point each)
5 8 19 + *
2 3 + 5 7 * /
7 * 12 + 9 / 3
23
2 3 + 5 7 * / 3 4 + * 1 -
9 9 * 8 7 * * 5 5 * * 4 -

Question 6:
Convert the following infix expressions into their RPN equivalents. (1/2 point each)
5 - 3 * 2 + 7
10 * 3 * 9 / 4
(5 + 8) / (9 -3)
5 + 8 / 9 - 3

Question 7:
Use BNF to write a grammar for reverse Polish notation that includes the+, -, *, and/
operators. (8 points)

Question 8:
Using your grammar from the previous question, draw a parse tree for the RPN expression
(4 points)
3 4 + 9 3 - 4 * *

2

CSC 433 Programming Languages Fall 2014

A Grammar for BASIC

Considered this grammar for a subset of the BASIC language.

<program> => <lines>
<lines> => <line> | <line> <lines>
<line> => <line-number> <stmt> \n

<line-number> => integer-literal
<stmt> => REM string-literal

| PRINT <print-expr>
| INPUT <variable>
| LET <assignment>
| END

<variable> => <integer-var> | <string-var>
<integer-var> => integer-variable-name
<string-var> => integer-variable-name$
<print-expr> => "string-literal" | <variable>
<assignment> => <integer-var> = integer-literal

| <string-var> = "string-literal"

Question 9:
(5 points) Construct a leftmost derivation and corresponding parse tree for the program:
10 REM THIS IS FUN!
20 LET X = 8
30 PRINT X

Three types of BASIC statements that are not included are theIF/THEN construct, the standard
GOTO statement, and theIF/GOTO construct

An IF/THEN looks like this:

30 IF X>5 THEN LET X = 5

A GOTO statement looks like this:

70 GOTO 10

An IF/GOTO statement looks like this:

100 IF Y<>Z GOTO 150

3

CSC 433 Programming Languages Fall 2014

Question 10:
Augment the BNF grammar above to include the BASICIF/THEN construct, theGOTO
statement, and theIF/GOTO construct. For simplicity, assume that the only conditionsper-
mitted for the boolean condition on theIF/THEN andIF/GOTO are numeric comparisons
of integer variables and integer literals and that only the standard comparison operators are
supported (= for equality,<, >, <=, >=, and<> for inequality). (8 points)

Submission

Before 11:59 PM, Monday, September 15, 2014, submit your workfor grading. Create and submit
a single archive file (a.7z or .zip file containing all required files) using Submission Box at
http://sb.teresco.org under assignment “PS2”.

Grading

This assignment will be graded out of 45 points.

Problem Value Score

Q1: Sebesta Exercise 12 2
Q2: Sebesta Exercise 13 4
Q3: Sebesta Exercise 14 4
Q4: Sebesta Exercise 20 5
Q5: RPN expression evaluations 3
Q6: Convert infix to RPN 2
Q7: BNF for RPN 8
Q8: Parse tree for RPN 4
Q9: Leftmost derivation/parse tree for BASIC program 5
Q10: Augmented BASIC BNF grammar 8

Total 45

4

