
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Program/Problem Set 4: Parser for Little C
Due: 11:59 PM, Monday, September 29, 2014

For this assignment, you will be implementing a parser for a further variant of thelC (little C)
language you used in the previous assignment. You will use the tokenizer you have developed as
the first stage in this larger program that will perform a fullsyntax analysis of (i.e., parse) alC
program.

A parser is a complex program. As such, you are strongly encouraged to form groups of 2 or 3
again for this assignment. You need not maintain the same groups you had for the tokenizer unless
you wish to do so.

You can find and run the executable for my solution code for this program onmogul.strose.edu
in /home/cs433/probsets/parser/ .

Parser Requirements

You will be using the grammar specified on the Tokenizer Program/Problem Set description.

Your tasks are

1. Determine from the BNF grammar which rules need to “make choices” and how they will
make those choices. That is, those rules that have two or moreoptions on their right hand
side, how will your parser know which rule to apply. For this,you will need to determine
what the “first” token set is for each choice.

For example, the<iterative-statement> rule can be either a<while-statement>
or a<for-statement> We can readily determine which of these to apply. If the next
token is thewhile keyword, we have encountered awhile statement, afor keyword
indicates afor statement, and any other token means there is an error.

2. Write a C programparser.c that takes as its input a single command-line parameter,
the name of a file that contains alC program. It should follow the model of the improved
“recdescent” example in how it scans the initializes the lexer, and calls the start nonterminal
(in this case,program).

To get started, combine yourlC tokenizer code with the basic framework found in the “recdescent”
example. You will need to replace the functionsexpr(), term(), andfactor() with func-
tions for all of the nonterminals in thelC grammar. You should name the functions the same as the
nonterminals, but replace dashes with underscores.



CSC 433 Programming Languages Fall 2014

You will have a function for each nonterminal in the grammar.Some are quite short, others
have more work to do. In most cases, it will be clear what you need to do from looking at
the BNF rule and the “first” tokens that will cause a particularrule to be applied. The trickiest
rule might be the<statement-list>, which consists of a statement, possibly followed by
another<statement-list>. In this case, you need to look at the BNF rule that produces a
<statement-list> to determine when we need to call it again, and when the<statement-list>
should end.

The output of your program should be primarily through the providedmatch, entryMsg and
exitMsg functions. Any time a function in your parser has determinedthat part of a rule
“matches” a token on the input, callmatch with the current function name (i.e., the name of
the BNF rule currently being applied), and an appropriately indented message about the token
matched will be printed. This, combined with calls toentryMsg andexitMsg will result in the
“parse tree”-like format of the output.

When you encounter a parse error, call theerror function with an appropriate message. The
messages in my version are short and probably not that helpful in many circumstances. If you get
the parser working and still have time, see if you can improveon these messages.

A slow and steady approach will be essential here. You will definitely need to ask questions. You
will definitely need to discuss your approach with your partner(s). No one piece is huge, though,
so tackle it one step at a time and keep making progress.

General Requirements

Your code should be commented appropriately throughout. Please also include a longer comment
at the top of your program describing your implementation. And, of course, it should include your
name(s).

Your program should compile without warnings usinggcc on mogul when the-Wall flag is
included. This flag turns on extra warnings that will help youavoid some of the pitfalls of C
programming. If you encounter any warnings that you don’t know how to fix, ask!

Include aMakefile that compiles the program with the-Wall flag. ThisMakefile should
produce an executable program calledparser. My Makefile is onmogul.strose.edu in
/home/cs433/probsets/parser/ . Please feel free to use or modify as you see fit.

Submission

Before 11:59 PM, Monday, September 29, 2014, submit your workfor grading. Create and submit
a single archive file (a.7z or .zip file containing all required files) using Submission Box at
http://sb.teresco.org under assignment “PS4”.

Grading

This assignment will be graded out of 75 points.

2



CSC 433 Programming Languages Fall 2014

Feature Value Score

Command-line parameter for file name 1
Appropriate output format 3
Parser and tokenizer startup 3
Functions to implement EBNF productions 60
Program documentation 4
Program efficiency, style, and elegance 3
WorkingMakefile 1

Total 75

3


