
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Topic Notes: Names and Bindings

We now turn our attention to the naming and binding of variables to memory locations in program-
ming languages. We will look more carefully at some familiarconcepts such as what are legal
names, and what are the types, lifetimes, and scopes of variables.

Variables
We use variables in our programs all the time, usually without thinking much about it.

A variable is an abstraction of one or more memory locations.It has attributes including

• a name

• an address (its “L-value”)

• a value (its “R-value”)

• a datatype

• a lifetime

• a scope

Names

Names for variables (and other identifiers in our programs) are subject to some important design
decisions:

• what characters can be used in names?

• are names case sensitive?

• are some names unavailable for general use (reserved words/keywords)?

If names are restricted to be too short, they cannot be as meaningful.

Some examples:

• Fortran 95: maximum of 31



CSC 433 Programming Languages Fall 2014

• C99: no limit but only the first 63 are significant; also, external names are limited to a
maximum of 31 (though gcc does not seem to suffer from this limit)

• C#, Ada, and Java: no limit, and all are significant

• C++: no limit, but implementers often impose one

• Some simple BASIC implementations limit to 1 or 2 characters(!)

Some languages also place further meaning on special characters within a name:

• PHP: all variable names must begin with dollar signs

• Perl: all variable names begin with special characters, which specify the variable’s type

• Ruby: variable names that begin with @ are instance variables; those that begin with @@
are class variables

• BASIC: variable names that end in$ are strings

See Example:
/home/cs433/examples/names/perl names.pl

Names in C-based languages are case sensitive, but many otherlanguages are not. This can cause
some problems with multi-language programming:e.g., calling a Fortran subroutine from C.

See Example:
/home/cs433/examples/names/caseinsensitive.f95

Special names includekeywordsandreserved words.

• Keywords are special only in some contexts, and may be used for other purposes in other
contexts.

• Reserved words can never be used except for their “special” purpose. Almost all languages
treat all of the special words this way.

• A language may wish to limit the number of reserved words (COBOLhas 400!).

However, the terms are often used interchangeably.

On the web: C++ Keywords at
http://en.cppreference.com/w/cpp/keyword

Addresses

Any variable needs to have some address associated with it where it can store its value.

2



CSC 433 Programming Languages Fall 2014

• A variable may have different addresses at different times during execution

• A variable may have different addresses at different placesin a program

• If two variable names can be used to access the same memory location, they are calledaliases

• Aliases are created via pointers, reference variables, C and C++ unions

• Aliases are harmful to readability (program readers must remember all of them)

In C:

int a[10];
int *b = a;

Here,a andb will appear to the reader of the program as two different arrays, but they are really
just two names for the same array.

Type

The type, or datatype, of a variable determines the range of values of variables and the set of
operations that are defined for values of that type.

For floating point data, the type also determines the precision (i.e., float vs.double).

Binding
Binding is the association of a particular attribute to an entity or an operation to a symbol.

Binding Time: when does this binding occur?

• static binding

– takes place at compile time

– remains the same throughout the execution of the program

• dynamic binding

– binding first done at runtime

– binding may change during program execution

Or, looking at a wider time scale:

• language design time – bind operator symbols to operations

3



CSC 433 Programming Languages Fall 2014

• language implementation time – bind floating point type to a specific representation

• compile time – bind a variable to a type in C or Java

• load time – bind a C or C++static variable to a memory cell

• run time – bind a nonstatic local variable to a memory cell

Type Bindings

Type bindings – the assignment of a datatype to a variable – isstatic for most languages.

In some languages, we accomplish the static binding when we declare a variable – we must give it
a type in addition to a name.

double d;

In other languages, the type bindings are implicit. For example, we saw that BASIC variables are
numeric unless the name ends in a$. In FORTRAN 77, unlessIMPLICIT NONE is specified,
variable identifiers are assumed to be typeREAL if they start with the lettersA-H andO-Z, and
INTEGER if they start with the lettersI-N.

This approach provides a small amount of convenience, but can lead to problems with reliability
(e.g., the use of an implicit variable when a different variable was intended).

With dynamic type binding, we do not need to specify a datatype at declaration.

In some cases, a type is bound to the variable when the variable is assigned a value. For example,
in JavaScript, we can declare a variable such as:

var x;

and later give it a value:

x = 7;

and that would result in the datatype ofx being an integer.

Later in the same program, we could reassign that variable tosomething else:

x = [17.23, 9.1];

andx is now a list of floating point values.

See Example:
/home/cs433/examples/names/js binding.html

4



CSC 433 Programming Languages Fall 2014

The necessitates runtime checking of datatypes to ensure operations on those values are appropriate
for the actual datatype. It also means we limit the errors that can be detected by the compiler.

Other languages usetype inferencing. Here, the language infers the datatype of variable based on
elements involved in the expression.

For astrongly typed language, inference makes many type declarations unnecessary.

Type checkingis the activity of ensuring that the operands of an operator are of compatible types.

• type coercionoccurs when an operand is converted to a type applicable to the current opera-
tion

• type errorsoccur if an operator is applied to an operand of an invalid type

• a language is called strongly typed if all type errors can be caught at compile time

• type coercion weakens the typing system of a language

Storage Bindings

The assignment of memory locations to variables is calledstorage binding. Key ideas here:

• Allocation– the binding of a memory cell to a variable

• Deallocation– returning a cell back into the available memory pool

• Lifetimeof a variable – the time during which the variable is bound to aspecific memory
location

We can categorize variables by their lifetimes:

• Static – bound to memory cells before execution begins and remains bound to the same
memory cell throughout execution,e.g., C and C++static variables in functions

See Example:
/home/cs433/examples/names/static.c

– advantages: efficiency (direct addressing), history-sensitive subprogram support

– disadvantage: lack of flexibility (no recursion)

– similar: class variablesin C++, Java.

• Stack-dynamic– storage bindings are created for variables when their declaration statements
areelaborated. (A declaration is elaborated when the executable code associated with it is
executed.)

– local variablesin C subprograms (not declaredstatic) and Java methods

5



CSC 433 Programming Languages Fall 2014

– allocated on therun-time stack

– advantage: allows recursion; conserves storage

– disadvantages: overhead of allocation and deallocation, subprograms cannot be history
sensitive, inefficient references (indirect addressing)

• Explicit heap-dynamic– allocated and deallocated by explicit directives, specified by the
programmer, which take effect during execution

– referenced only through pointers or references,e.g., dynamic objects in C++ (vianew
anddelete), all objects in Java

– allocated from theheap

– advantage: provides for dynamic storage management

– disadvantage: inefficient and unreliable

• Implicit heap-dynamic– allocation and deallocation caused by assignment statements

– all variables in APL; all strings and arrays in Perl, JavaScript, and PHP

– advantage: flexibility (generic code)

– disadvantages: inefficient, because all attributes are dynamic, loss of error detection

Scope

The scopeof a variable is the range of statements over which it isvisible. That is, the range of
statements where the variable’s bindings apply (i.e., where we can use it!).

The local variablesof a program unit are those that are declared in that unit.

The nonlocal variablesof a program unit are those that are visible in the unit but notdeclared
there.Global variablesare a special category of nonlocal variables.

Thescope rulesof a language determine how references to names are associated with variables.

There are two major categories:staticor lexical scope, anddynamic scope.

With static scope, the scope of a variable depends only on theprogram text – it can be determined
completely at compile time. That is, any name can be connected to a variable declaration (or
determined to be undeclared) by the compiler.

See Example:
/home/cs433/examples/names/JavaScope.java

We can tell exactly which variables are visible at each line of this Java program. If a name does
not match something in the local scope (local variables and parameters), we look at the instance
and class variables.

6



CSC 433 Programming Languages Fall 2014

We can summarize the basic rule: a variable is visible until the} that matches the{ most recently
preceding the declaration. An important exception occurs in C++, Java, and C#, where variables
declared infor statements have their scope restricted to thefor construct.

An exception here is that the instance variables are only accessible in non-static methods.

Some names can bemaskedby definitions in enclosed scopes (orblocks). C and C++ will allow
this at any level (a variable declared local to awhile loop can mask a local variable within a
method/function), while Java does not permit this.

void sub() {
int count;
while (...) {

int count;
count++;
...

}
...

}

The C-based languages (e.g., C99, C++, Java, and C#) allow variable declarations to appear any-
where a statement can appear (in the middle of a block). Olderversions of C required that all
declarations appeared before any other statements.

In C99, C++, and Java, the scope of all local variables is from the declaration to the end of the
block.

In C#, the scope of any variable declared in a block is the wholeblock, regardless of the position
of the declaration in the block. However, a variable still must be declared before it can be used.

Hidden declarations can sometimes be accessed anyway, suchas by prependingthis. before the
name of a Java instance variable that has been masked by a local or parameter.

Related to this is thelet construct in functional languages including Scheme.

See Example:
/home/cs433/examples/names/let.scm

The namesx1, x2, y1, y2 act similarly to local variables with a scope that lasts through the
remainder of thelet function. The main difference is that their values cannot change once set.

A better example improves on theindex function we wrote for the practice midterm:

See Example:
/home/cs433/examples/names/betterindex.scm

Here, we avoid the potential of 2 redundant recursive calls.

This can be even more complex in languages that allownested subprogram definitions, which cre-
ate nested static scopes. This is the case in several languages including Ada, JavaScript, Common
LISP, Scheme, Fortran 2003+, F#, and Python.

7



CSC 433 Programming Languages Fall 2014

See Example:
/home/cs433/examples/names/js.html

Here, the functionssub1 andsub2 only can be called from elsewhere in the enclosing function
setMessage. Even thoughsetMessage callssub1, which in turn callssub2, the variablex
in sub2 refers to thex declared insetMessage, even though its most recentdynamicancestor
is sub1.

If the language useddynamic scopinginstead, the search for nonlocal bindings would follow the
call history rather than the static hierarchy.

Global Scope

C, C++, PHP, and Python programs can consist of a sequence of function definitions in a file.
These languages allow variable declarations to appear outside function definitions and these are
global variablesaccessible to all functions.

A C and C++ global declaration defines both the type and allocates the storage:

int sum;

To refer to a global variable defined in a different file without allocating space for it:

extern int sum;

These languages also support a file scope global-like variable that we can access only within the
file where it is defined:

static int sum;

This allows the variable to be shared among the file’s functions without the potential for name
collisions with other files.

In C++, if a global variable is masked by a local of the same name, it can be preceded by:: to
force access to the global.

In Python, a global variable can be referenced in functions,but can be assigned in a function only
if it has been declared to be global in the function. This is necessary because Python automatically
implicitly declares local variables when they are assigned. If a reference is intended to be to
a global rather than the creation of a new local, it must first be declared to beglobal in the
function.

Named Constants

A named constantis a variable that is bound to a value only when it is bound to storage. As
you know from your programming experience so far, their use enhances program readability and
modifiability and can parameterize programs.

8



CSC 433 Programming Languages Fall 2014

The binding of values to named constants can be either static(calledmanifest constants) or dy-
namic.

In Ada, C++, and Java, the expressions that initialize a constant can be of any kind, dynamically
bound (i.e., you can use variables).

C# has two kinds,readonly andconst. The the values ofconst named constants are bound
at compile time, while the values ofreadonly named constants are dynamically bound.

C does not support named constants, but#define preprocessor directives are often used for the
same purpose.

9


