Computer Science 433

Programming Languages
The College of Saint Rose
Fall 2014

Topic Notes: Overview of Languages

We begin the course with an overview of languages, both tiésticand current. We will consider
some of the essential features of languages, and categjoeize

Categories of Languages

We will classify most languages as one or moremgberative, functional, logic, object-oriented,
markup, as well as eithecompiled or interpreted.

Throughout the semester, we will also see languages thatdexeloped in response to hardware
advances and new ideas in programming.

1940s — program hardware directly
1950s — simple applications (hardware focus)
19605/1970s — structured programming

e costs shifted from hardware to software
e complexity and size of software grew dramatically

1970s/1980s — data-oriented program design
1980s — object-oriented program design

e data abstraction + inheritance + polymorphism
19905/2000s — network/web applications

2010s — mobile applications, heavy multithreading

I mperative Languages

Imperative languages were developed first, and their desilgeavily influenced by theon Neu-
mann architecture at the heart of nearly all computers.

A program for a von Neumann architecture boils down to a sehstfuctions and a loop that
executes those instructions:

1. Fetch an instruction

CSC 433 Programming Languages Fall 2014

Update next instruction location
Decode the instruction

Execute the instruction

a > W DN

GOTO 1

Basic picture of the system:

scratchpad

Microsequencer ONtrol

(BRAIN!) store
Y (microcode)

arithmetic
logic
unit

The ALU knows how to do some set of arithmetic and logical apens on values in the scratch-
pad.

Usually the scratchpad is made up of a setegisters.

The micro-sequencer “brain” controls what the ALU readsrfiithe scratchpad and where it might
put results, and when.

This is what makes up theentral processing unit (CPU).

We expand this idea a bit to include memory and other devices:

CSC 433 Programming Languages Fall 2014

scratchpad
CPU
Chi
Microsequencefontrol P
(BRAIN!) Store
(microcode)
ALU:
arithmetic
logic
unit
t
lots of pins Memory
Programs and
data stored in
Address Bus the same
Data Bus memory

[other devices...
mouse

CPU interacts with memory and other devicesbages.

The details are the subject of a computer organization eoufsyou have had that course, you
should be able to make connections between what we learedhisster and what you have seen
there. If not, don’t worry - you will be able to make those ceations when you do.

But for us, it is important to understand that each instructimat can execute on our computer
is capable of (some subset of) fetching information fromstegs and/or memory, applying some
ALU operation to that information to obtain a result, andristg that result in a register and/or
memory.

Both the programs and their data are stored in memory.

Quite naturally, early programming languages (and in faetny current programming languages)
have statements that perform functions that corresportdd@tchitecture model.

e Variables mimic memory and registers — they store values

CSC 433 Programming Languages Fall 2014

¢ Assignment statements allow us to modify variables
o Arithmetic operations compute values using the ALU
e |terative repetition allows us to repeat sections of our program

e Control structures allow us to branch to different parts of the program conwveihye

Examples of imperative languages include Fortran, C, C+icdPaS#, Java, Perl, and JavaScript.

Functional Languages

The primary mechanism for computing in a functional languisg unsurprisingly, the application
of (often recursive) functions to parameters.

e pure functional programming has no variables or assignstatéments!

e Very convenient in some contexts

¢ not well-suited for others

o functional languages are usually interpreted rather tioampied

Examples include LISP and Scheme.

L ogic languages

Logic languages use a completely different paradigm fogamming. A program is specified
as a set of rules, and it is up to the language to apply rules aparopriate sequence to obtain a
desired result.

e rules used to build a knowledge base

e perform queries against knowledge base

The most common example of a logic language is Prolog.

Object-oriented L anguages

The object-oriented languages are not a disjoint category the ones we have listed so far. In
fact, object-oriented languages evolved from imperaawvgliages.

Key features include:

e data abstraction

CSC 433 Programming Languages Fall 2014

e inheritance
e polymorphism

¢ late binding

Examples of object-oriented languages include C++, JavaS@w/ltalk, and Eiffel.

Markup and Web L anguages
These are not really programming languages, but are woftayjaick mention.

Web-based or application-specific markup languages spegibut of Web pages, database schemas,
etc.

Common examples include HTML, XML, and XSLT.

L anguage | mplementation

We will now take a brief look at how your program in a high-lelaguage becomes the collection
of bits in memory that can be executed by the architecture.

The simplest languages aassembly languages, which are not programming languages in the
sense we are studying them this semester. An assembly Ig@goasists of a set of simple opera-
tions that can be performed that each correspond to a maictstnaction that can be executed on
a specific architecture.

For example, the following is an assembly language progaarthe MIPS architecture that popu-
lates a small array with powers of 2:
mai n: mai n() {

get a pointer to ar into tO

value of 1 to place in first |ocation

place 1 into array[O0]

doubl e val ue for next |ocation

place 2 into array[1]

doubl e val ue for next | ocation

place 4 into array|[2]

doubl e val ue for next |ocation

place 8 into array|[3]

return control to the sinulator

la $tO, ar

addi $t1, $0, 1
sw $t1, 0($t0)
sl $t1, $t1, 1
sw $t1, 4(%$t0)
sl $t1, $t1, 1
sw $t1, 8($t0)
sl $t1, $t1, 1
sw $tl1, 12($t0)
jr $ra

HFHEHFHFHFHFHFRHFEHFHFHF

The details of the program are not important, but an assetabyuage program like this is used
as input to arassembler, which converts each of thassembly language instructions to a single
machine instruction.

CSC 433 Programming Languages Fall 2014

In the case of MIPS, each will correspond to a unique 32-bitejavhich when encountered by a
MIPS processor, will cause the desired operation to occur.

Any program we can write in any language could be written imssembly language, but we do
not often do this.

High-level languages offer an easier, safer, and more Iplert@ay to write programs (using the
ideas and constructs you already know and more we will stoidysemester).

Compiled Languages

It is important to understand how a program icampiled high-level language works. We will
look at an example in C, but similar procedures apply for C++{r&o, and many other languages.

See Example:
/ home/ cs433/ exanpl es/ hel l o_c

This C program defines one functiami n, which calls one other functiopy i nt f .

For those unfamiliarmai n is the function that starts executing when a C program startd
pri ntf isused to produce text output. It works much like Ja&yst em out . pri ntl n, and

is provided as part of C’standard library. The standard library is an extensive set of functions
available for use by C programs. We will see more of these. late

For now, we want to think about what happens to turn this C@mprogram into an executable
program.

A C compiler translates the C source code into an intermediate codelcfjlect code. This object
code is almost machine code but is missing some specificsexeonple, in this case, the object
code produced has the machine code forrthé n function, but has no mechanism to call that
function. It also knows it needs to call a functipni nt f , but does not have the code for that
function.

For our example, we can perform just the translation from @®®to object code with this com-
mand:

gcc -c hello.c

This produces a file calleldel | 0. o, which has the object code for tin@i n function. The- c
flag instructs the compiler to stop after creating the oljéxt

This file is not intended to be human readable, but if we look,atve might recognize some
artifacts from our source code, most notably the names dftimms and any string constants we
used.

We should also note that we are using a specific C compiler, lcailed GCC, for the GNU C
Compiler, part of the GNU Compiler Collection. This is a free @danany other language)
compiler system that is available for many systems.

We will look at more details of how a compiler works early teemester.

6

CSC 433 Programming Languages Fall 2014

Source

program /

Lexical
analyzer

me(cal units

Syntax
analyzer

Intermediate
code generator Optimization
and semantic (optionaly

analyzer

e 1

Intermediate
code

symbol
table

Code
generator

Machine
language -~ Input data

Computer

]

Results

Figure 1.3 from Sebesta 2012.

To create an executable program, a second step daikedg (done by a program called thieker)
takes the object code from onomi n function, puts it together with precompiled object codethar
pri ntf function and the low-level code that knows how to startrthe n function, and produces
an executable file.

For our example:
gcc -0 hello hello.o

Invoked in this form (without the ¢ option from the previous stepycc acts as a linker. The
- 0 option allows us to specify the name of the executable filelpced. We then list all of the
object files (in this case, just the one) that contain objededhat is needed by the progragt.c
automatically brings in needed object code from the stah@alibrary, in this case thpri nt f
function.

Once we have the executable, we can run it;
./hello

C programmers do not need to be concerned with all of theps stest of the time, but it is very
helpful to be aware of them.

In fact, there are intermediate steps about which we shaellaviare. The first step is@epro-
cessor step that deals with compiler directives such#asicl ude and#def i ne. The compiler
does not convert C source code directly to object code. Hllystranslates C code to the assembly
language of the target architecture, then uses the assetolglenvert to object code. We can ask
our compiler to do just this step if we want to see the asseicduie it generates.

If we invokegcc with the- E option, it produces preprocessed C source code

7

CSC 433 Programming Languages Fall 2014

gcc -E hello.c

If we invoke gcc with the - S option, it produces only the assembly language programishat
normally sent to the assembler to produce object code.

gcc -S hello.c

After running this command, we can see the assembly lange@dg for our computer, ready to
be assembled and linked into an executable.

Interpreted Languages
At the other end of the spectrum is anter preted language.

Source

program
\(Input data

Interpry

Results

Figure 1.4 from Sebesta 2012.

Here, aninterpreter (which is itself usually a program compiled as above) readssburce code
for a program in an interpreted language and executes it.

We can try out some examples using:

On theweb: Applesoft BASIC in JavaScript at
http://ww. cal ormen. com appl esoft/

which uses JavaScript (another interpreted language rpneted by a web browser!) as its inter-
preter.

While the lack of a compiler and linker eliminated the tratisla process, interpreted languages
typically execute 10 to 100 times slower than compiled cerpdrts.

See Example:
/ homre/ cs433/ exanpl es/ basi ¢

CSC 433 Programming Languages Fall 2014

A Hybrid Approach: Compilefor aVM

The situation is a bit different for Java. A Java compilervaits source code (your ava file)
into an intermediateyte code (the correspondingcl ass file).

The byte code can then be interpreted on a Java virtual ma¢huiM), rather than directly on the
CPU as is done with C and similar languages. The JVM is the prodghat runs on the CPU.

Source

program /

Lexical
analyzer

Lexical units

L

Syntax
analyzer

Parse trees

Y

Intermediate
code generator

Intermediate
code

Gpreter

Results

/ Input data

Figure 1.5 from Sebesta 2012.

There is no separate and explicit linking phase here. ldsighen the byte code for a Java class
is executed, the JVM needs to be able to find any class fileaicamg compiled byte code for any
other classes it uses. This might be other classes you hawgiled from your own Java source,
or code from the Java libraries (lilgcanner , Arr ayLi st , etc.).

Note that the above is not completely true about modern Japgementations, which use “just
in time” compilers and other technology to allow Java praggdo run faster than they would if a
JVM were to interpret byte code. We will likely say more abthus later in the semester.

CSC 433 Programming Languages Fall 2014

L ayersof Abstraction

We can see the layered interface as provided by a typical madenputer system:

Virtual
Scheme
computer

Virtual
C

Scheme
Interpreter

Operating system

Operating
system
command

Interpreter |
1

Macrolnstruction
Interpreter

Assembler

Virtual
assembly
language
Virtual <= o computer

computer

Figure 1.2 from Sebesta 2012.

Much of this diagram is the subject of an operating systenmtooiputer organization course, but
we can see how Java has an extra “layer” between the langundgb@hardware.

Historical Overview

Chapter 2 describes the historical development of prograimianguages. We will not cover this
chapter in detall in class, but it is worth a read.

A diagram similar to the text’s Figure 2.1:

On theweb: Pixel's Programming Languages History Chart at
http://rigaux. org/ |l anguage- study/ di agram png

Key ideas:

e Development of a compiled language: Fortran

Development of a functional language: LISP

Development of a more structured language: ALGOL

Business records: COBOL

String processing: SNOBOL
Data abstraction: SIMULA 67

10

CSC 433 Programming Languages Fall 2014

A structures teaching language: Pascal

Systems programming: C

Logic programming: Prolog

Department of Defense designs a language: Ada

Development of object-oriented programming: Smalltalk+C3ava

Web-focused scripting languages: Perl, JavaScript, PiARpR, Ruby

We will look back at many of the example languages from thisptér and their contributions as
we cover other topics later in the semester.

11

