
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Topic Notes: Encapsulation

Abstraction andencapsulation are fundamental concepts in nearly all modern programming lan-
guages.

Abstract data types are user-defined (or perhaps language API-defined) data types that

• hide implementation details from users of the types

• provide a limited and restricted set of operations to modifyand query the state of instances
of the type

• are normally defined by a single syntactic unit (e.g., aclass)

• other parts of the program can then declare, allocate, and use instances of this new data type

Data abstraction improves reliability, writability, and modifiability, hence is supported in nearly
every modern and not-that-modern programming language.

• hidden data representation of the ADT makes it easier for users of the ADT – they don’t
need to know or care about the internal details

• meanwhile, ADT authors can change internal representationwithout affecting code using it
(assuming its public interface remains)

• natural way to organize code for separate implementation, separate compilation

• reusability!

We are all familiar with examples of this, ine.g., Java:

See Example:
/home/cs433/examples/javageneric

A C++ example:

See Example:
/home/cs433/examples/cppvector

Note that there are different levels ofinformation hiding possible:public , private , protected
data members and/or methods.



CSC 433 Programming Languages Fall 2014

Most ADTs come equipped with special methods calledconstructors, and in some casesdestruc-
tors, which are called implicitly on creation, deletion, of instances of the ADT, respectively.

In languages without explicit support for encapsulation, such as C, we can still do separate com-
pilation, but there is no guarantee that users of the ADTs will not modify the state of the structure
without using provided functions.

See Example:
/home/cs433/examples/ratios

Language Requirements
A programming language that supports ADTs must have:

• a syntactic unit to support encapsulation,e.g., class or package

• a mechanism to separate information such as method signatures available to callers while
hiding the implementation details

In the language design phase, some decisions need to be made:

• what does the ADT container look like?

• are type parameters (i.e., generics) allowed?

• do we separate the interface definition from the implementation details (e.g., as in C++ with
separate header and implementation files for a class)?

The text describes examples ofencapsulation mechanisms in some detail, we will look at C++.
Refer to the text for more about Ada, Objective C, C#, Ruby.

• C++ uses aclass as the encapsulation mechanism

• C++ classes look a lot like Cstruct s

• there is only one copy of the code of the class functions shared among all instances

• each instance gets a copy of class data members (i.e., instance variables)

• C++ classes can be allocated statically (as globals orstatic members), dynamically on
the stack (declare as local variables), or dynamically on the heap (withnew)

• we saw the protection levels for information hiding previously: public , protected ,
private

• constructors in C++ are functions, whose name must match the class name, intended to
initialize instance variables, allocate any dynamic structures

2



CSC 433 Programming Languages Fall 2014

• constructors are called implicitly when a class is instantiated but can also be called explicitly
like any other function

• destructors are needed as C++ memory is explicitly deallocated so any dynamic memory
associated with the instance of a class must be returned to the system withdelete

• destructors are named with the class name also, but precededby ˜

• destructors also called implicitly but can be called explicitly

• C++ separates the interface (in a header file) from the implementation (in a code file)

• in addition to standard protection levels, C++ allowsfriend functions or classes that are
permitted access to private members

Many of us are most familiar with Java – it borrows many ideas from C++, adding a new scoping
mechanism calledpackage scope instead of friends.

Parameterized ADTs

When type parameters are allowed, giving rise to generic structures, additional issues must be
considered. The idea is that we can write one ADT that can store any (or almost any) type of
elements, while maintaining static typing (ensuring only the proper type of elements can ever be
added, removed, etc. from our ADT).

Again, the text has some examples, including Ada and C#. In C++,generics are implemented as
templated classes. The syntax and idea is similar to that in Java.

• in C++, the type can be anything, including primitive types

• in Java, the type has to be anObject type, necessitating the container classes (Integer ,
Double , etc.)

• Java’s introduction in version 5.0 of these eliminated the need for casts when retrieving
elements (and when combined withautoboxing andautounboxing allows nearly seamless
use of primitive types)

• side note: when these were introduced, Sun (the company thatdeveloped the language)
wanted to make sure programs using generic types could run onprior versions of the Java
Virtual Machine (JVM), so type parameters are used at compile time but that information is
erased before run time

On the web: Type Erasure in the Oracle Java Tutorials at
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

See Example:
/home/cs433/examples/javaerasure

3



CSC 433 Programming Languages Fall 2014

Namespace Encapsulations
Large programs bring together code that defines a large number of global names (e.g., functions,
global variables), raising the chances of collisions amongthose names.

In a language like C, programmers can agree on some conventions to reduce the chances of col-
lisions. For example, all global names defined by the MessagePassing Interface (MPI) for C
programs start with the prefixMPI_.

Other languages provide more explicit support fornamespace encapsulation:

• C++ namespaces: a library can be implemented with all of its names within a namespace,
and that namespace would be used to access those names externally

use namespace std;

allows all of the names in thestd namespace to be used by the remainder of the file without
the prefix qualifierstd::

• Java package system allows additional access (toprotected members) among package
classes

import java.util.Scanner;

allows the nameScanner to be used from packagejava.util without specifying the
fully qualified namejava.util.Scanner within the code

4


