Computer Science 433
Programming Languages
The College of Saint Rose

Fall 2014

Topic Notes: Data Types

A data typeis a collection of values and a set of predefined operationthase values. It is an
abstraction as the details of the representation are hidden from the 8sene are hidden by the
architecture, some can be hidden by the programming lamguag

A descriptoris the collection of the attributes of a variable. We willladaate on this idea later.
These attributes are sometimes needed only at compile ifiadegttributes are static) or may need
to be maintained at run time.

An object as you surely know, represents an instance of a user-dgabsttact data) type.

A programming language must address a fundamental desige fsr all data types: What opera-
tions are defined and how are they specified?

Primitive Data Types

Primitive data typesire provided by most languages. These are not defined in tératlser data
types.

They are often exactly the kinds of data that the hardwarpatg or very similar. This makes
operations on these (potentially) very efficient.

Integers

This is certainly true of integer data types supported bymmming languages: the types sup-
ported frequently correspond directly to the sizes of then&ls of bits that the underlying hardware
is designed to operate on.

In some languages, like C, the size of various integer typasveay from implementation to
implementation.

Java defines 4 sizebyt e: 8 bits,short : 16 bits,i nt : 32 bits, and ong 64 bits. This is part
of the Java language specification.

A 32-bit int has23? = 4.3 billion possible values, while a 64-bit int h2f§ = 1.84 x 10'? possible
values.

Bit and byte significance is also an important consideratibis.very important from an architec-
ture perspective but can play a role in programming langsiagevell.

When placing the bits within a byte, they are almost alwayaraged with thenost significant bit
(msb) on the leftleast significant bi(lsb) on the right. This nearly never comes into play with a
programming language. it is almost entirely the concermefunderlying hardware.

CSC 433 Programming Languages Fall 2014

We follow the same idea for stringing together bytes to mgkevards, longwords, etc.

0110 1010/, 0000 1100
MSB LSB

Theendiannessefers to the the order in which we store these bytes in memory

o little endian(x86)

low memory

LSB
MSB

high memory

¢ big endian(Sun Sparc, 68K, PPC, IP “network byte order”)

low memory

MSB
LSB

high memory

An architecture can use either ordering internally, so lagf is consistent. However, endianness
becomes important when we think about exchanging data ammaa@iines (networks)Network
byte ordering(big endian) is required of networked data for consistenbgnvexchanging data
among machines that may use different internal represensat

The MIPS architecture is bi-endian. It can process data @iiter big or little endianness.

See Example:
/ horre/ cs433/ exanpl es/ show byt es

Integer values may be treated as signed or unsigned. Fotannteger, the unsigned representa-
tion can store values 0 through — 1.

Signed representations require must have a way to repnesgative numbers.

It turns out there are a number of reasonable or at least sggrreasonable options.

e Signed Magnitude

The simplest way is to take one of our bits (usually the hitoeder bit) and use it to indicate
the sign: a 0 means positive, and a 1 means negative.

With n bits, we can now represent numbers frerf2"~! — 1) to (27! — 1)
Positive numbers just use the unsigned representation.
Negative numbers use a 1 in thign bitthen store the magnitude of the value in the rest.

CSC 433 Programming Languages Fall 2014

positive | o X |

negative | 1 | —X |

sign 4
bit magnitude

This idea is very straightforward, and makes some senseastipe:

— To negate a value, you just switch its sign bit.
— To check if a value is negative, just look at the one bit.

One potential concern: we have two zeroes! +0 and -0 arendistalues. This can compli-
cate matters.

Another property of signed binary representations that vilenant to consider is how how

the signed values fall, as a function of their unsigned regm&ations.

signed
value

unsigned value of represente

So we do have a disadvantage: a direct comparison of two valifiers between signed
and unsigned values with the same representation. In fiaciegative numbers look to be
“bigger than” all positive numbers. Plus, the ordering ajawéves is reverse of the ordering
of positives. This might complicate hardware that wouldchedeal with these values.

e Excess N

Here, a valuer is represented by the non-negative vaiue N.

With 4-bit numbers, it would make sense to use Excess 8, sawedbout the same number
of negative and positive representable values.

1000 = 0 (0O is not the all 0's pattern!)
0111 = -1
0000 = -8
1111 = 7

So we can represent a range of values is -8 to 7.

This eliminates the -0 problem, plus a direct comparisonke&dhe same as it would for
unsigned representations.

CSC 433 Programming Languages Fall 2014

signed | +N
value

unsigned value of represente

-N
Excess N representations are used in some circumstant¢eselairly rare.
e 1's complement
For non-negative, we just use the unsigned representatiom.of
For negativer, use thebit-wise complemer{tlip each bit) of—z.
Programming tip: the- operator will do a bitwise complement in C and Java.

Examples:

0 = 0000
-1 = 0001 = 1110
-0 = 0000 = 1111
-7 = 0111 = 1000
Problems:

— we have a -0.

— we can compare within a sign, but otherwise need to check sign

signed
value

-0
unsigned value of represente

CSC 433 Programming Languages Fall 2014

Range: -7 to +7.
Like Excess N, 1's complement is used in practice, but onpiecific situations.

e 2's complement
For non-negative;, use the unsigned representation:of
For negativer, use the complement efz, then add 1 (that seems weird..).

0

0000

-0 = 0000+1 = 1111+1 = 0000

Now, that’s useful. 0 and -0 have the same representatidhgse’s really no -0.

1

0001

-1 = 0001+1 = 1110+1 = 1111

Also, very useful. We can quickly recognize -1 as it's thauealith all 1 bits no matter how
many bits are in our representation.

Another useful feature: 1’s bit still determines odd/eveot true with 1's complement)

signed
value

o .
unsigned value of represente

Like 1's complement, we can compare numbers with the sanmedsigctly, otherwise we
have to check the sign.

Given these convenient properties, 2's complement reptasens are the standard and de-
fault unless there’s some specific situation that calls fatlaer representation.

Historical note: Fortran had dr- statement:
|F (1) GOrO 10, 20, 30

which performed the equivalent of the following (in a moreflar C/Java syntax):

CSC 433 Programming Languages Fall 2014

if (i <0) goto 10;
if (i == 0) goto 20;
goto 30;

It is easy to check these cases and peform the jump quicklyan{s complement represen-
tation ofl .

The 4-bit 2’'s Complement numbers will become very familiar:

0000 =0 1000 = -8
0001 =1 1001 = -7
0010 = 2 1010 = -6
0011 = 3 1011 = -5
0100 = 4 1100 = -4
0101 = 5 1101 = -3
0110 = 6 1110 = -2
0111 = 7 1111 = -1

Notice that the negation operation works both ways: if ydetdne 2’s complement of a number
then take the 2’s complement again, you get the original raxrback.

2's complement also allows us to use the same circuits thatdvadd/subtract unsigned values
and will produce a correct 2’'s complement result (subjeciverflow restrictions).

Floating-point numbers

Most languages provide floating-point data types whichespond to the floating point repre-
sentations in hardward.| oat anddoubl e or something equivalent are usually provided, at a
minimum.

Let’s think about the way we represent these things in ourrfrad” base-10 world.

2
3.5, 3 1.7 x 10*

We can use decimal notation, fractions, scientific notation

Fractions seem unlikely as our binary representation, leutan use the decimal notation. More
precisely, instead of a decimal point, we havadix point.

11.1=2+14 =35,0.11 =1+

1=3
471

Just like we can’t represent some fractions in decimal mtatve can’t represent some fractions
in binary notation either.

Remembet = .3
Consider:.10

CSC 433 Programming Languages Fall 2014

o L
What value is this2 + £ + 55 + ...

How about.1100?

How can we denote an arbitrary fractional value, %&y

We can follow this procedure:

1. Multiply by 2, write integer part.

2. Keep fractional part, repeat until O, or a repeating patenerges.

So: =.001100110011...

When representing these in the computer, we have lots ofidesit make, such as how we place
the radix point, etc. We want to store a wide range of valuaswe’re limited to2” unique values

in anyn-bit representation.
Scientific notation helps us here. Consider some examples:

0001011 = 1.011 x 274
1=1.x2"
1.1=11x2°

—101 = —1.01 x 2?
1111 = 1.111 x 23

CSC 433 Programming Languages Fall 2014

Floating point = integer part mantissax 2¢xporent

sign mantissa exponent

If we use binary version of scientific notation, we note thihahambers (other than 0) have a
leading 1. So we need not store it! This is known aspghantom 1bit.

The mantissais fractional, with the most significant bit representing g‘s bit, the next the}I’s
bit, etc.

Theexponents stored in excess notation (which is helpful for hardwaed must align fractional
values before addition or subtraction).

What about 0? It would be nice if that was the all-0’s value. idegr, 0000000000000000000000000000000(
really would represent something like) x 2177,

Trying to store something smaller than that value wouldlteésa floating point underflow

There are many standards, which can be hard to implemense™ad include several useful and
unusual values, such asx, —oo, NaN (not a number), etc.

Most modern computers use the IEEE Floating-Point Stantladdormat.

¢ Single-precision (32 bits)
— 1 sign bit, 8 bit exponent with bias, 23 bit mantissa
e Double-precision (64 bits)
— 1 sign bit, 11 bit exponent with bias, 52 bit mantissa
The exponenbiasindciates than an excess format is used. The smallest possiponent (-126

for single precision) is represented as a binary 1. Thus, dael27 to the number we wish to
represent. The special exponent O is reserveddbnormal numbers

For example, consider the single-precision IEEE 754 remtasion of the number 51.625. The
straight binary representation:

110011.101

We normalize this to

1.10011101 x 2°

So we need a sign bit of 0, an exponent of 5, represented asn18dits: 10000100, and the
mantissa of 10011101 (remember the phantom 1!).

CSC 433 Programming Languages Fall 2014

Complex Data
Some languages support a complex type, including C99, grrad Python.
Each value consists of two floats, the real part and the inaagipart.

We saw that Scheme could use complex values anywhere. In Ge@ekta do a bit of extra work,
but as of C99, it is supported:

See Example:
/ homre/ cs433/ exanpl es/ cconpl ex

Decimal

A built-in decimal type is not as widely supported by commeoogramming languages. But it is
included in some languages, usually those that supponméssiapplicationse(g, COBOL), but
also in C#.

The idea is to store a fixed number of decimal digitdyimary coded decimgBCD) form. Here,
each digit is represented by 4 bits.

We gain precision (we can have exactly as many digits as gatdor some waste (we will need
more bits). Also, many architectures do not support BCD diyesb operations are likely handled
in software, which will be much slower leading to an efficigidt.

Boolean
And the simplest data type: thmol ean. All we have ist r ue orf al se.

Most languages have some support for a genuine Boolean gatgbiyt C traditionally did not, and
used integer values to represent Booleans. Zero repredal#s”™ any non-zero value represents
“true”.

Most of the time, these values are not represented by a dditgles bit-level access is expensive
and inconvenient on most architectures.

Characters

Computers only deal with numbers. Humans sometimes dealetiérs and text. So we just need
agree on how to encode letters as numbers if we want to havejputer process them.

e ASCII (1963) — American Standard Code for Information Intearcde

— fits in a byte

— some you’ll want to know:
space (32 = 0x20)
numbers ('0’-'9’ = 48-57 = 0x30-0x39)
lowercase letters ('a’-'z’ = 97-122 = 0x61-0x7a), 96+letpe®s
uppercase letters (A-'Z’' = 65-90 = 0x41-0x5a), 64+letfers

9

CSC 433 Programming Languages Fall 2014

— See:man asci i

e Of historical interest: EBCDIC (Extended Binary Coded Decinmé¢tchange Code) devel-
oped by IBM for punched cards in the early 1960s and IBM stilklisen mainframes today,
as do some banking systems in some circumstances.

e Unicode (1991), ASCII superset (for our purposes) — 2-bytratters to support interna-
tional character sets

Most modern languages provide primitive data types to merecharacters.

Strings

Most programming languages allow programmers tosigag data types as a representation of
sequences of characters.

There are many design decisions that need to be made.

e Are they arrays of characters, an abstract data type, ormatme type in their own right?
e Are lengths static or dynamic?
¢ Are they counted or null-terminated?
e What operations are supported directly?
For static length strings, a descriptor is needed only afpdlertime to store the static string value,

its length, and the starting address. For dynamic stringsieed a run-time descriptor which two
lengths: the current length and the maximum length (as otiydeallocated.

Language String Examples

We will look at the support for strings in a set of represameaanguages.

e Cand C++

— strings are not primitives
— they arechar arrays and a library of functions that provide operation8 ior C++

— end of meaningful portion of allocated array indicated byudl (i \ 0’) character —
means length is a@(n) operation

— C++ provides &t r i ng class that encapsulates a@ar array
— no run-time descriptor needed

e SNOBOL4 (a string manipulation language)

10

CSC 433 Programming Languages Fall 2014

— strings are primitive types with many operations, inclgdataborate pattern matching

e Fortran and Python

— primitive type with assignment and several operations
— Python strings are static length

e Java

— implemented in th&t r i ng class, but some “primitive type-like behavior” withused
for concatenation
— St ri ngs areimmutable

— mutable strings are provided by tBer i ngBuf f er class
e Perl, JavaScript, Ruby, PHP

— primitives with built-in pattern matching, using regulaipeessions
— dynamic length

Enumeration Types

An ordinal typehas a range of possible values can be easily associatedhgitbet of positive
integers. €.g, Java nt, char, bool ean).

With enumeration typesll possible values are provided in the definition.
C and Pascal were the first to useuns. A C example:

See Example:
/ homre/ cs433/ exanpl es/ enum

As we can see with C, these are often implemented by integers.

Use of enumeration types improves readability, and canongreliability in certain cases. We
have essentially created a group of related named constarisiefined a datatype, instances of
which are restricted to the available types.

There are a few design decisions that need to be made for adgagdhat supports this:

e SS an enumeration constant allowed to appear in more thatypaelefinition, and if so,
how is the type of an occurrence of that constant checked?
e are enumeration valuesercedto integer?

e can other types be coerced to an enumeration type?

11

CSC 433 Programming Languages Fall 2014

If the enumeration types are not coerced, this can allovebettor checking (as in Java, C#) and
restriction of operations to those apprpriate for an enatraar rather than integers.

We can see the power of Jawaumtypes by looking at the examples at Oracle:

On the web: Enum Types at Oracle’s Java Tutorials at
http://docs. oracle.com javase/tutorial/javal/javaOd enum ht m

Subranges

Closely related to enumeration types atdrange typesThese consist of an ordered, continuous
subsequence of an ordinal type.

For example in Pascal, we can define a variable such as:
var HoursWrked: O0..24;

This would define a variable that behaves much like aheger , except that the compiler and
run-time system will not allow any value outside of the definange.

See Example:
/ honme/ cs433/ exanpl es/ hel | o_pascal

See Example:
/ home/ cs433/ exanpl es/ pascal _subr ange

Ada provides a similar capability, as described in the text.

This has advantages in readability, efficiency (an appatpinternal storage can be chosen), and
program safety (we can avoid using a clearly incorrect yalue

Arrays

Our next data type is the very familiar and widely usethy construct. For a data type that has
such a wide usage, there are many variations and designarecibat lead to different implemen-
tations.

Our text describes an array as “a homogeneous aggregatéactldenents in which an individual
element is identified by its position in the aggregate, nab the first element.”

There are several major categories of arrays supportedripugdanguages:
e Static

— ranges/allocation done at compile time
— e.g, C/C++ arrays wittst at i ¢ keyword

— efficient: no dynamic allocation

12

CSC 433 Programming Languages Fall 2014

e Fixed stack-dynamic

— static binding of subscript range (declaration time)
— e.g, normal C/C++ arrays declared as locals
— space efficient

e Stack-dynamic

— run-time bindings for subranges and run-time allocation

— fixed for the entire life of the array

— e.g, Ada arrays

— flexibility advantage: need not know the array size untitsed
— but still allocated on the stack

e Fixed heap-dynamic

allocation occurs by user specification, not at elaboréatoe

memory comes from heap, not stack

e.gC++ arrays created hyew, Java arrays

similar to stack dynamic except allocated on the heap

e Heap-dynamic

subscript ranges and memory allocation dynamic

arrays can grow or shrink during execution

very flexible, but more complex run-time

e.g, Perl, JavaScript, Python, Ruby

The array notation needs to be resolved to addresses arebsvalbe used.

Two options:

Addr ess(X[n])

Address(X[0]) + (n - 1) * elenment_size

or

Address(X[n]) Address(X[0]) - elenent_size + (n * el enent _si ze)

In the latter, the first part can be done at compile time inateituations (faster array access).

A compile-time descriptor for a single-dimensional arr&@gds (most of):

13

CSC 433 Programming Languages Fall 2014

e element type

e index type

¢ index lower bound (forced to 0 in C/C++/Java)
e index upper bound

e address
We also need to distinguish between rectangular and jaggéidiimensional arrays.

e Rectangular arrays have congruent rows and columns

— e.g, Fortran, Ada, C#
— must distinguish row major (most languagesfolumn major linearization (Fortran)

e Jagged arrays can have different length rows

— essentially an array of arrays
— e.g, C++, Java

Think about the memory layout and run-time mechanism tosscealues in each option.

Additional array design issues:

e What types are legal for subscripts?

— Fortran, C: integer only
— Ada: integer or enumeration (includBsol ean andchar)
— Java: integer types only

Are subscripting expressions in element references ramgeked?

— C, C++, Perl, and Fortran do not specify range checking
— Java, ML, C# specify range checking
— In Ada, by default it requires range checking, but can beddroif

e When are subscript ranges bound?

What is the maximum number of subscripts?

Can array objects be initialized?
e.g, in C, C++, Java, C#:

14

CSC 433 Programming Languages Fall 2014

int a[] = {3, 9, 18, 21};
e.g, in Ada:

List : array (1..5) of Integer :=
(1 => 17, 3 => 34, others => 0);

e Is there support for heterogeneous arrays?

— elements need not be all of the same type
— e.g, Perl, Python, JavaScript, Ruby

e Additional operations (beyond standard indexing)?

— array assignment (dees shallow)
— array catenation

e Are any kind of slices supported?

Hashes/Associative Arrays

An associative arrayalso known as &ashis an unordered collection of data elements that are
indexed by an equal number of values cakegls

For example, a Perl program of mine defines this associatiag:a

% eam array = ('’ ATLANTA' ,’ Atl anta Fal cons’,
"ARI ZONA' ,’ Ari zona Cardi nal s’

"BALTI MORE' ,’ Bal ti nore Ravens’,

" BUFFALO , ' Buffalo Bills’,

"CARCLI NA' |, ' Carol i na Pant hers’,

" CH CAGO ,’ Chi cago Bears’,

" CI NCI NNATI’ ,” Cinci nnati Bengal s’ ,

" CLEVELAND , ' C evel and Browns’,
"DALLAS ,’ Dal | as Cowboys’,

" DENVER , ’ Denver Broncos’,

"DETRO T, Detroit Lions’,

" GREENBAY’ , ' Green Bay Packers’,

" HOUSTON , ’ Houst on Texans’ ,

"I NDI ANAPQOLI S, ’ I ndi anapolis Colts’,

" JACKSONVI LLE |’ Jacksonvil | e Jaguars’,
"KANSASCI TY' , " Kansas City Chiefs’,

"M AM’,’ M am Dol phins’,

15

CSC 433 Programming Languages Fall 2014

"M NNESOTA' ,’ M nnesota Vi ki ngs’,

" NEWENGLAND , ' New Engl and Patriots’,
"NEWORLEANS' ,’ New Ol eans Saints’,
"NYA ANTS' , " New York G ants’,
"NYJETS ,’ New York Jets’,

" QAKLAND , ' Gakl and Rai ders’,

" PHI LADELPHI A’ , ’ Phi | adel phi a Eagl es’,
"PITTSBURGH , ' Pittsburgh Steelers’,
" SANDI EGO , ' San Di ego Chargers’,

" SANFRAN , ' San Franci sco 49ers’,

" SEATTLE ,’ Seattl e Seahawks’,
"STLOUIS ,’ St. Louis Rans’,

" TAMPABAY' ,’ Tanpa Bay Buccaneers’,

" TENNESSEE' |’ Tennessee Titans’,

" WASHI NGTON' , " WAshi ngt on Redski ns’);

This defines mappings between a token form of a football teaarne with the team’s full name.
Later in the program, it is used to translate the tokenizediore (which is found in the program’s
data files) to the full name:

printf("<tr><td>$bol droad $team array{$roadteant $scorel
$endbol dr oad</ t d><t d>at </ t d><t d>$bol dhone
$t eam array{$honet eant $score2 $endbol dhonme</t d>
<td>${ganetine} PW/td></tr>\n");

Here, bothbr oadt eamand$honet eamhave been assigned values when reading a data file.
These can be very convenient to use.

Design issues include:

o What is the form of references to elements?
e Is the size static or dynamic?

e How can we access elements efficiently (likely answer: maghi
For Perl, in the example above, we could add a new team to floeiasion with:
$team array{’ LOSANGELES'} = 'Los Angeles Californians’;
And if we wanted to remove an element:

del et e($t eam array{’ DALLAS });

16

CSC 433 Programming Languages

Python, Ruby, and Lua are other languages with direct supmoaissociative arrays.

Records
A recordis a (potentially) heterogeneous aggregate of data element
Examples include Pascal records, C/C++ structs, and C++ slasse

See Example:
/ honme/ cs433/ exanpl es/rati os

In Ada:

type Enp Rec Type is record
First: String (1..20);
Md: String (1..10);
Last: String (1..20);
Hourly Rate: Fl oat;

end record;

Enp_Rec: Enp_Rec_Type;

Individual members of a record can be accessed in various way

e O keyword in COBOL

e . operator in C/C++

Record storage is typically in a block of contiguous memoupatmns.

The names, types, and offsets (from the start of the recastjcdated with each field need to be

stored in a (likely compile-time) record descriptor.
Pascal examples:

On the web: Pascal Programming Lesson 11: Record Data Structure at
http://pascal - programm ng. i nfo/l essonll. php

Note the use of either the notation or ani t h construct to access fields.

What other operations might be included?

e assignment is often supported if the types are identicadl{fise copy)

e Ada allows record comparison

e COBOL providesMOVE CORRESPONDI NG, which copies a field of the source record to

the corresponding field in the target record

17

CSC 433 Programming Languages Fall 2014

Unions
A uniontype is similar to a record, but it can store different typkiea at different times.
Pascal provides this functionality with case variant rdspC/C++ with theuni on types.

An example from C:

uni on nodeTypeStruct {
DRUM conput i ngNode *conpNode;
DRUM net wor kNode *net Node;
} type;

Here, this defines a datatype that could either contBIiR@M.conput i ngNode or aDRUM.net wor kNode,
but never both. We treat it just likest r uct except that the two fields share the same memory.
So a madification to either is a modification of both.

This is implemented by assigning largest possible memoityneeded, along with all descriptions
of possible types in the descriptor.

In C/C++/Fortran, unions arffee unions— that means we can access the data using any of the
names, regardless of which name was used to place the vabudéunion.

See Example:
/ homre/ cs433/ exanpl es/ uni on

A discriminated uniomemembers what type is currently stored in the union (whiaktrbe tracked
in a run-time descriptor), and restricts access to that typés is supported in Ada.

Since free unions are unsafe, they are not supported in J&#. o

Tuple Types

We can think of gupleas a record but where the elements are unnamed. In many \naysare
like lists, and can be used for purposes such as returningptewalues from a function.

The text mentions tuple implementations in Python, ML andIR#particular, tuples in Python are
essentially immutable lists.

List Types

We already looked distsin Scheme, so we will say just a little more here.
Python has brought more fundamental list support into arenatve language.
See Example:

/ home/ cs433/ exanpl es/ pyt hon_l i st

18

CSC 433 Programming Languages Fall 2014

Pointers and References

A pointeris a type whose values consists of memory addresses andialspdc (or sometimes,
nul 1) value. C/C++ pointers and Java references are prime examples

Pointers allow forindirect addressing- the data is in the memory location referred to by the
contents of a pointer variable.

This provides the mechanism for dynamic memory allocateg,(mal | oc, new).

Important operations on pointers:

e assignment set a pointer’s value to some useful address

— result of a dynamic memory allocation
— take addressg() of existing variable
— copy value from an existing pointer with a useful address

o dereferencing- “follow” the pointer. In C/C++, this is the operator preceding a pointer
variable’s use

e pointer arithmetic- pt r ++ — advances the pointer to the next memory location (reladive
the data size of whait r points to)

See Example:
/ home/ cs433/ exanpl es/ i sort

There are some dangers associated with allowing pointerpingramming language:

e dangling reference- a pointer to memory no longer allocated for its previougppse

int *x = (int *)malloc(10 » sizeof(int));
/'l use X
free(x);

/'l use of x here is a dangling reference

e memory leaks- allocate memory but never free it for reuse

¢ |ost heap-dynamic variablesan allocated heap-dynamic variable that is no longer acces
ble because we no longer are maintaining a pointer to th&hlar(.e., it is garbage and a
memory leakf nothing is done about it)

19

CSC 433 Programming Languages Fall 2014

int *x, i;

for (i=0; i<10; i++) {
X = (int *)malloc(10 * sizeof(int));
/1l do other stuff?

}

/1 only the last allocated x is still accessible here

e casts to treat a pointer to one datatype as a pointer to anethes allowed in C/C++)

References
e C++ includes a special kind of pointer type callegegerence typ¢hat is used primarily for
formal parameters (more on this later)

e Java reference variables replace pointers entirely — alieferences to objects, rather than
being addresses

e C# includes both the references of Java and the pointers of C++

References are more restrictive, and hence safer. No taKiityaay addresses or pointer arith-
metic.

Dealing with Memory Leaks

We have seen that languages sometimes require dynamidlaiiatead memory to be explicity
returned to the systene(g, C'sfree, C++'sdel et e), or have the system determine which
memory is still in use and reclaim what is no longer used,(Java).

We also saw that with explicit deallocation, the potentiaynexist for references to remain to
variables that no longer are allocated (or worse, sincdoaaked for some other purpose): the
dangling reference problem.

The text describes two approachesmbstoneandlocks-and-keythat can deal with this problem,
but both are quite expensive. The most common approachmgdhe problem is done at the
programmer level rather than the language level - making any references or pointers to chunks
of heap memory that have been deallocated are set to someaiudl as soon as the deallocation
occurs. For example, one project | worked on that was deeelopC and C++ has this requirement
in the programmer’s style guide for the project.

The most common approach is used by Java and many other miashguages is to take the
responsibility for deallocating memory out of the handshefprogrammer. In these cases, memory
is reclaimed using a process callgarbage collection

Approaches:

e reference countergeager approach)

20

CSC 433 Programming Languages Fall 2014

maintain a counter for each allocation unit, if counter gie3, unit can be reclaimed
approach suffers from space/time considerations

circular lists lead to reference counting problems
— process is incremental, so costs are spread over time

e mark-sweeyglazy approach)

— allocation continues until heap space becomes low
— when a garbage collection is triggered
x mark all allocation units for removal
« follow all pointers, unmarking any reachable unit
*x when no more pointers to trace, deallocate remaining maakedation units

— main disadvantage: it is an expensive process that causgsrdigram to pause its
execution for a significant time, though this can be redugedibning periodically not
just when memory available becomes very low

Garbage collection has been an active area of researchgngonmning language design for many
years — we are just scratching the surface of the approacidesays to do it more efficiently.

Type Checking

A language’stype checkingystem ensures that the operands of an operator areropatible
types

Types are compatibile with an operator if they either makehlégal types for the operator or can
be converted automatically.€., coerced to a legal type.

If such a conversion is not possible, we hawge error.

Type checking is closely related to type binding:

e static type bindings mean that type checking can (usua#lyjdne statically
e dynamic type bindings necessitates a dynamic type checking
¢ with dynamic type binding and checking, type errors can delyletected at run time rather

than compile time (when we’d like to detect them, if possible

A language is calledtrongly typedf all type errors will be detected. This is helpful, as it ares
any type errors will be detected.

C and C++ allow unchecked union types, hence are not stroygédt

Java, C#, and Ada are nearly strongly typed.

21

CSC 433 Programming Languages Fall 2014

Type coercion is convenient for programmers (considerragdni nt to af | oat , resulting in a
f | oat), but could cause some programmer errors to go undetected.

Type Equivalence

Even if two variables (or more generally, expressions) drdifterent type names, they could
represent the same data type.

Two expressions that haveme type equivalen@e known to be exactly the same type. A name
type equivalence requirement is relatively easy for a lagguo enforce, but unnecessarily restricts
some otherwise legal constructs:

e subranges would not be equivalent to integer types

A more flexible but difficult requirement to enforcesgucture type equivalencélere, two data
types that have the same “structure” even if not the same neamnebe considered equivalent for
type checking purposes.

Some issues to consider:
e Would two record types be considered equivalent if they bagp have the same types of
fields and in the same order, but have different names?

¢ In languages that allow array subscript ranges, do the gpbsanges have to be the same
or just the same “size™?

e What about programmer type definitions (think €igpedef) where the programmer may
intend a value to be distinct from a type it has been defined as:

typedef int grid_size_t;

and the programmer did so to ensure that only integers ofgypeld_si ze_t would be
allowed to be used wherega i d_si ze t is expected.

The text also goes into some information about type theoou &fe encouraged to read about it
but we will not cover it this semester.

22

