
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2014

Topic Notes: Control Structures

Nearly any useful program will needcontrol structures – a mechanisms by which they can perform
conditional execution and repetition. These quickly become familiar to introductory programmers.

In 1966, B̈ohm and Jacopini published “Flow Diagrams, Turing Machines, and Languages with
only Two Formation Rules” in which they showed that all structured algorithms can be expressed
using only three types of operations:

• sequence

• selection

• iteration

Further, they showed that all “flowchartable” code can be expressed using 2 control statements:

• two-way decision

• pretest loops

Anything more complex can be rewritten in terms of these basic building blocks.

However, most programming languages provide a wider variety of control structures.

Selection Statements
A selection statement allows the program to choose between/among two or more pathsof execu-
tion. That is, which statement/block do we execute next?

These are often broken down into two categories: the two-wayselector and the multi-way selector.

Two-way Selection

Two-way selection is provided by our familiarif-then [else] conditional statements:

if control_expression
then clause
else clause

CSC 433 Programming Languages Fall 2014

Some things to consider about these statements:

• Is a “then” keyword included or required?

• Is some sort of parenthetical notation (e.g., the curly braces in C/C++/Java, thebegin/end
in Pascal) required for compound clauses, or is indentation(e.g., as in Python) used to deter-
mine the extent of the “then” and “else” parts?

• Generally, the control expression must evalulate to a Boolean, though C/C++ and Python
allow an arithmetic expression.

• How is thedangling else problem handled?

– we saw that the language grammar can handle this – Java uses this to match anelse
to the nearest previousif unless braces are used to specify something else

– other languages eliminate the problem with anend if keyword (sometimes spelled
fi)

Historical note: Fortran had anIF statement:

IF (I) GOTO 10,20,30

which performed the equivalent of the following (in a more familiar C/Java syntax):

if (i < 0) goto 10;
if (i == 0) goto 20;
goto 30;

It is easy to check these cases and peform the jump quickly with a 2’s complement representation
of I.

Multiple-way Selection

Here, we allow selection of one of many statements or blocks for execution.

This is provided in Java/C/C++ by the familiarswitch-case construct as well as a chain of
if-else if-else statements.

There are a number of variations on this construct and many issues to consider.

In C/C++/Java’sswitch statement:

• The control expression (the part in the parentheses after theswitch keyword) must be in-
teger types (no longer the case in Java 7 and up, which now allowsString and enumerated
types).

2

CSC 433 Programming Languages Fall 2014

• Cases can be empty or overlapping – there is no implicit branchat the end of a selectable
segment, necessitating thebreak.

• An optionaldefault can be specified.

See Example:
/home/cs433/examples/switch

C# is similar except the “fall through” is disallowed and string constants can be used as selection
values.

Ruby has acase statement that looks like this:

leap = case
when year % 400 == 0 then true
when year % 100 == 0 then false
else year % 4 == 0
end

Multiple selectors may be implemented in a variety of ways:

• multiple conditional branches

• store case values in a table and use a linear search of the table

• a hash table of case values (typically for 10 or more case values)

• for small numbers of “small numbered” cases, could use an array indexed by the case values,
values are the labels where to jump

We have also seen multiple selection with Scheme’scond function.

Iteration
Iteration is accomplished through loop constructs. These are often categorized ascounter-controlled
loops andlogic-controlled loops.

Counter-Controlled Loops

A strict counting iterative statement is managed by a loop variable, and three values: theinitial,
terminal andstep values.

We know well thefor constructs that are used in the C-based languages (though thefor construct
is more general).

Fortran’sDO statement is a more strictly a pure counting loop:

3

CSC 433 Programming Languages Fall 2014

DO 1000 I = 1, 99, 2
...
1000 CONTINUE

Some issues to consider with counting loops:

• legal types of loop variable?

• scope of loop variable?

• can the loop variable be modified in the body of the loop?

• if so, does it change the loop behavior?

In the C-based languages:

for ([e1]; [e2]; [e3]) statement

• all 3 expressions can be statements or statement sequences (with statements separated by
commas, in which case its value is that of the last statement in the sequence)

• if e2 is omitted, it is an infinite loop

• no explicit loop variable

• no restrictions on what can be modified within the loop

• e1 is evaluated once,e2, e3 are evaluated on each iteration

• a branch into the body of afor loop in C is legal!

See Example:
/home/cs433/examples/gotoloops/gotofor.c

• break terminates the loop immediately

• continue terminates the current iteration

C++ permits a Boolean control expression; Java and C# require itto beboolean.

Java, C++, C99 permit a variable declarations withine1 with scope to the end of the loop, which
C (before 99) does not.

An example in Ada:

On the web: For Loops in Ada Control, Wikibooks at
http://en.wikibooks.org/wiki/Ada Programming/Control#for loop

Here:

4

CSC 433 Programming Languages Fall 2014

• the loop variable’s type is adiscrete range

• loop variable scope is limited to the loop

• loop variable cannot be changed in the loop, but the discreterange can; it does not affect
loop control, since...

• the discrete range is evaluated just once

• cannot branch into the loop body

In Python:

On the web: “More Control Flow” in The Python Tutorial at
http://docs.python.org/3/tutorial/controlflow.html

• the loop variable is assigned each value in the specified range, once for each iteration

• there is an optionalelse clause that executes if the loop is executed to completion (no
break caused an early exit)

Logic-Controlled Loops

These loops, of which the familiarwhile (pre-test) anddo-while (post-test) loops in the C-
based languages are examples, continue executing until a condition becomes false (or in the case
of C, 0).

As with for loops, C and C++while anddo-while loops allow a branch into the loop body.
Java has no mechanism that allows this, so it is not supported.

See Example:
/home/cs433/examples/gotoloops/gotowhile.c

Iterators

A special class of iteration is the traversal of the contentsof a data structure, often based on an
iterator.

We will look first at this in Java (5.0+) where arrays or any class thatimplements Iterable.

See Example:
/home/cs433/examples/iterable

Ruby has predefined iterator methodstimes, each andupto:

3.times {puts "Ruby is fun!"}
list.each {|value| puts value}
1.upto(5) {|x| print x, " "}

5

CSC 433 Programming Languages Fall 2014

Perl allows iteration over an arbitraty list of values:

foreach $week (1..17,"divw","wc","div","conf","sb") {
// do something with $week here

}

Unconditional Branches
We have seen examples of unconditional branches likebreak, continue, andgoto.

Early languages depended on the GOTO, structure languages emphasized higher-level control
structures.

Edsger Dijkstra’s famous letter to the editor of theCommunications of the ACM sparked a great
debate:

On the web: Letters to the editor: go to statement considered harmful at
http://dl.acm.org/citation.cfm?doid=362929.362947

Some modern languages do not include a general GOTO (e.g., Java) but others do (e.g., C, C++).
Their use is generally quite rare.

Guarded Commands
Another control structure that you’re less likely to have encountered in your programming expe-
rience is that ofguarded commands. The idea is that a list of alternatives is presented and the
program can choose, possibly randomly, among valid alternatives.

An example, from the text, using the notation proposed by Dijkstra when he proposed the idea in
1975.

if i = 0 -> sum := sum + i
[] i > j -> sum := sum + j
[] j > i -> sum := sum + i
fi

When execution reaches this point, any of the statements after the-> can be executed as long as
the boolean expression preceding it, itsguard, evaluates to true. In order to do this, all guards are
evaluated (ideally concurrently), then one of the commandsis chosen to execute, nondeterministi-
cally, from among those whose guards are true. Further, someguard must evaluate to true, or an
error will occur.

In the above example, consider the possibilities, and what which statements could execute:

i=0, j=0 Only command 1 could execute

6

CSC 433 Programming Languages Fall 2014

i=0, j=-1 Commands 1 or 2 could execute

i=0, j=1 Commands 1 or 3 could execute

i=1, j=0 Only command 2 could execute

i=1, j=1 No commands could execute, error

i=1, j=2 Only command 3 could execute

The main motivation for this was to ensure program correctness at run time, but the idea has come
up again in the context of concurrency.

Another example, also from the text, shows how this can allowmultiple options to be true when it
does not matter which of two alternatives are equally valid:

if x >= y -> max := x
[] x <= y -> max := y
fi

We compute the max of two numbers, observing that it does not matter which of the two commands
executes in the case wherex is equal toy.

In Haskell, this idea can be used to define cases for a function(from Sebesta Ch. 15):

fact n
| n == 0 = 1
| n == 1 = 1
| n > 1 = n * fact(n - 1)

Dijkstra also uses the concept of guarded commands for loop constructs. The loop continues so
long as any guard is true, choosing nondeterministically from among the true guards to select a
command to execute. Once all guards become false, the loop iscomplete.

The text shows how a loop with guarded commands can be used to express a sort routine for 4
values:

do q1 > q2 -> temp:=q1; q1:=q2; q2:=temp;
[] q2 > q3 -> temp:=q2; q2:=q3; q3:=temp;
[] q3 > q4 -> temp:=q3; q3:=q4; q4:=temp;
od

Each time through the loop. some value gets closer to its eventual location. Once all have arrived
at their locations, all guards will be false, and the loop will terminate.

7

