
Computer Science 433
Programming Languages
The College of Saint Rose
Fall 2012

Topic Notes: Data Types

A data typeis a collection of values and a set of predefined operations onthose values. It is an
abstraction, as the details of the representation are hidden from the user.

A descriptoris the collection of the attributes of a variable. We will elaborate on this idea later.
These attributes are sometimes needed only at compile time (if all attributes are static) or may need
to be maintained at run time.

An objectrepresents an instance of a user-defined (abstract data) type.

An design issue for all data types: What operations are definedand how are they specified?

Primitive Data Types
Primitive data typesare provided by most languages. These are not defined in termsof other data
types.

They are often exactly the kinds of data that the hardware supports, or very similar. This makes
operations on these potentially very efficient.

Integers

The integer data types in our languages usually correspond directly to the sizes of the chunks of
bits that the underlying hardware can operate on.

Java defines 4 sizes:byte: 8 bits,short: 16 bits,int: 32 bits, andlong 64 bits. This is part
of the Java language specification.

In some languages, like C, the size of various integer types can vary from implementation to
implementation.

A 32-bit int has232 = 4.3 billion possible values, while a 64-bit int has264 = 1.84× 1019 possible
values.

Bit and byte significance is also an important consideration.It is very important from an architec-
ture perspective but can play a role in programming languages as well.

When placing the bits within a byte, they are almost always arranged with themost significant bit
(msb) on the left,least significant bit(lsb) on the right. This nearly never comes into play with a
programming language.

We follow the same idea for stringing together bytes to make up words, longwords, etc.

CSC 433 Programming Languages Fall 2012

0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0

MSB LSB

Theendiannessrefers to the the order in which we store these bytes in memory.

• little endian(x86)

high memory

.

.

.
LSB
MSB

.

.

.

low memory

• big endian(Sun Sparc, 68K, PPC, IP “network byte order”)

high memory

.

.

.
MSB
LSB

.

.

.

low memory

An architecture can use either ordering internally, so longas it is consistent. However, endianness
becomes important when we think about exchanging data amongmachines (networks).Network
byte ordering(big endian) is required of networked data for consistency when exchanging data
among machines that may use different internal representations.

The MIPS architecture is bi-endian. It can process data witheither big or little endianness.

See Example:
/home/cs433/examples/show bytes

Integer values may be treated as signed or unsigned. For ann-bit integer, the unsigned representa-
tion can store values 0 through2n − 1.

Signed representations require must have a way to representnegative numbers.

It turns out there are a number of reasonable or at least seemingly-reasonable options.

• Signed Magnitude

The simplest way is to take one of our bits (usually the highest-order bit) and use it to indicate
the sign: a 0 means positive, and a 1 means negative.

With n bits, we can now represent numbers from−(2n−1
− 1) to (2n−1

− 1)

Positive numbers just use the unsigned representation.

Negative numbers use a 1 in thesign bit then store the magnitude of the value in the rest.

2

CSC 433 Programming Languages Fall 2012

bit

1 −x

x0positive

negative

magnitude
sign

This idea is very straightforward, and makes some sense in practice:

– To negate a value, you just switch its sign bit.

– To check if a value is negative, just look at the one bit.

One potential concern: we have two zeroes! +0 and -0 are distinct values. This can compli-
cate matters.

Another property of signed binary representations that we will want to consider is how how
the signed values fall, as a function of their unsigned representations.

−0

signed
value

unsigned value of representation

So we do have a disadvantage: a direct comparison of two values differs between signed
and unsigned values with the same representation. In fact, all negative numbers look to be
“bigger than” all positive numbers. Plus, the ordering of negatives is reverse of the ordering
of positives. This might complicate hardware that would need to deal with these values.

• Excess N

Here, a valuex is represented by the non-negative valuex+N .

With 4-bit numbers, it would make sense to use Excess 8, so we have about the same number
of negative and positive representable values.

1000 = 0 (0 is not the all 0’s pattern!)
0111 = -1
0000 = -8
1111 = 7

So we can represent a range of values is -8 to 7.

This eliminates the -0 problem, plus a direct comparison works the same as it would for
unsigned representations.

3

CSC 433 Programming Languages Fall 2012

+Nsigned
value

unsigned value of representation

−N

Excess N representations are used in some circumstances, but are fairly rare.

• 1’s complement

For non-negativex, we just use the unsigned representation ofx.

For negativex, use thebit-wise complement(flip each bit) of−x.

Programming tip: the∼ operator will do a bitwise complement in C and Java.

Examples:

0 = 0000

-1 = 0001 = 1110

-0 = 0000 = 1111

-7 = 0111 = 1000

Problems:

– we have a -0.

– we can compare within a sign, but otherwise need to check sign.

−0

signed
value

unsigned value of representation

4

CSC 433 Programming Languages Fall 2012

Range: -7 to +7.

Like Excess N, 1’s complement is used in practice, but only inspecific situations.

• 2’s complement

For non-negativex, use the unsigned representation ofx.

For negativex, use the complement of−x, then add 1 (that seems weird..).

0 = 0000

-0 = 0000+1 = 1111+1 = 0000

Now, that’s useful. 0 and -0 have the same representation, sothere’s really no -0.

1 = 0001

-1 = 0001+1 = 1110+1 = 1111

Also, very useful. We can quickly recognize -1 as it’s the value with all 1 bits no matter how
many bits are in our representation.

Another useful feature: 1’s bit still determines odd/even (not true with 1’s complement)

−0

signed
value

unsigned value of representation

Like 1’s complement, we can compare numbers with the same sign directly, otherwise we
have to check the sign.

Given these convenient properties, 2’s complement representations are the standard and de-
fault unless there’s some specific situation that calls for another representation.

Historical note: Fortran had anIF statement:

IF (I) GOTO 10,20,30

which performed the equivalent of the following (in a more familiar C/Java syntax):

5

CSC 433 Programming Languages Fall 2012

if (i < 0) goto 10;
if (i == 0) goto 20;
goto 30;

It is easy to check these cases and peform the jump quickly with a 2’s complement represen-
tation ofI.

The 4-bit 2’s Complement numbers will become very familiar:

0000 = 0 1000 = -8
0001 = 1 1001 = -7
0010 = 2 1010 = -6
0011 = 3 1011 = -5
0100 = 4 1100 = -4
0101 = 5 1101 = -3
0110 = 6 1110 = -2
0111 = 7 1111 = -1

Notice that the negation operation works both ways: if you take the 2’s complement of a number
then take the 2’s complement again, you get the original number back.

2’s complement also allows us to use the same circuits that would add/subtract unsigned values
and will produce a correct 2’s complement result (subject tooverflow restrictions).

Floating-point numbers

Most languages provide floating-point data types which correspond to the floating point repre-
sentations in hardware.float anddouble or something equivalent are usually provided, at a
minimum.

Let’s think about the way we represent these things in our “normal” base-10 world.

3.5,
2

3
, 1.7× 1014

We can use decimal notation, fractions, scientific notation.

Fractions seem unlikely as our binary representation, but we can use the decimal notation. More
precisely, instead of a decimal point, we have aradix point.

11.1 = 2+1+1
2

= 3.5, 0.11 =1

2
+1

4
= 3

4

Just like we can’t represent some fractions in decimal notation, we can’t represent some fractions
in binary notation either.

Remember1
3
= .3

Consider:.10

6

CSC 433 Programming Languages Fall 2012

What value is this?1
2
+ 1

8
+ 1

32
+ ...

x = .1010
1

2
x = .0101

x+
1

2
x = .1 = 1

x =
2

3

How about.1100?

x = .1100
1

4
x = .0011

x+
1

4
x = 1

x =
4

5

How can we denote an arbitrary fractional value, say,1

5
?

We can follow this procedure:

1. Multiply by 2, write integer part.

2. Keep fractional part, repeat until 0, or a repeating pattern emerges.

So 1

5
= .001100110011...

When representing these in the computer, we have lots of decisions to make, such as how we place
the radix point, etc. We want to store a wide range of values, but we’re limited to2n unique values
in anyn-bit representation.

Scientific notation helps us here. Consider some examples:

.0001011 = 1.011× 2−4

.1 = 1.× 2−1

1.1 = 1.1× 20

−101 = −1.01× 22

1111 = 1.111× 23

7

CSC 433 Programming Languages Fall 2012

Floating point = integer part+ mantissa× 2exponent

mantissasign exponent

If we use binary version of scientific notation, we note that all numbers (other than 0) have a
leading 1. So we need not store it! This is known as thephantom 1bit.

The mantissais fractional, with the most significant bit representing the 1

2
’s bit, the next the1

4
’s

bit, etc.

Theexponentis stored in excess notation (which is helpful for hardware that must align fractional
values before addition or subtraction).

What about 0? It would be nice if that was the all-0’s value. However, 00000000000000000000000000000000
really would represent something like1.0× 2−127.

Trying to store something smaller than that value would result in a floating point underflow.

There are many standards, which can be hard to implement. These will include several useful and
unusual values, such as+∞, −∞, NaN (not a number), etc.

Most modern computers use the IEEE Floating-Point Standard754 format.

• Single-precision (32 bits)

– 1 sign bit, 8 bit exponent with bias, 23 bit mantissa

• Double-precision (64 bits)

– 1 sign bit, 11 bit exponent with bias, 52 bit mantissa

The exponentbias indciates than an excess format is used. The smallest possible exponent (-126
for single precision) is represented as a binary 1. Thus, we add 127 to the number we wish to
represent. The special exponent 0 is reserved forsubnormal numbers.

For example, consider the single-precision IEEE 754 representation of the number 51.625. The
straight binary representation:

110011.101

We normalize this to

1.10011101× 25

So we need a sign bit of 0, an exponent of 5, represented as 132 in 8 bits: 10000100, and the
mantissa of 10011101 (remember the phantom 1!).

8

CSC 433 Programming Languages Fall 2012

Complex Data

Some languages support a complex type, including C99, Fortran, and Python.

Each value consists of two floats, the real part and the imaginary part.

We saw that Scheme could use complex values anywhere. In C, we need to do a bit of extra work,
but as of C99, it is supported:

See Example:
/home/cs433/examples/ccomplex

Decimal

Not as widely supported, but included in some languages, usually those that support business
applications (e.g., COBOL), but also in C#.

The idea is to store a fixed number of decimal digits, inbinary coded decimal(BCD) form. Here,
each digit is represented by 4 bits.

We gain precision (we can have exactly as many digits as is needed) for some waste (we will need
more bits). Also, many architectures do not support BCD directly, so operations are likely handled
in software, which will be much slower.

Boolean

And the simplest data type: theboolean. All we have istrue or false.

Most languages have some support for a genuine Boolean data type, but C traditionally did not, and
used integer values to represent Booleans. Zero represents “false”, any non-zero value represents
“true”.

Most of the time, these values are not represented by a singlebit, as bit-level access is expensive
and inconvenient on most architectures.

Characters

Computers only deal with numbers. Humans sometimes deal withletters and text. So we just need
agree on how to encode letters as numbers if we want to have a computer process them.

• ASCII (1963) – American Standard Code for Information Interchange

– fits in a byte

– some you’ll want to know:
space (32 = 0x20)
numbers (’0’-’9’ = 48-57 = 0x30-0x39)
lowercase letters (’a’-’z’ = 97-122 = 0x61-0x7a), 96+letter pos
uppercase letters (’A’-’Z’ = 65-90 = 0x41-0x5a), 64+letterpos

– See:man ascii

9

CSC 433 Programming Languages Fall 2012

• Of historical interest: EBCDIC (Extended Binary Coded Decimal Interchange Code) devel-
oped by IBM for punched cards in the early 1960s and IBM still uses it on mainframes today,
as do some banking systems in some circumstances.

• Unicode (1991), ASCII superset (for our purposes) – 2-byte characters to support interna-
tional character sets

Most modern languages provide primitive data types to represent characters.

Strings
Most programming languages allow programmers to usestring data types as a representation of
sequences of characters.

There are many design decisions that need to be made.

• Are they arrays of characters or a primitive type?

• Are lengths static or dynamic?

• If dynamic, are they counted or null-terminated?

• What operations are supported directly?

For static length strings, a descriptor is needed only at compile time to store the static string value,
its length, and the starting address. For dynamic strings, we need a run-time descriptor which two
lengths: the current length and the maximum length (as currently) allocated.

Language String Examples

We will look at the support for strings in a set of representative languages.

• C and C++

– strings are not primitives

– they arechar arrays and a library of functions that provide operations inC or C++

– end of meaningful portion of allocated array indicated by a null (’\0’) character –
means length is anO(n) operation

– C++ provides aString class that encapsulates a Cchar array

• SNOBOL4 (a string manipulation language)

– strings are primitive types with many operations, including elaborate pattern matching

• Fortran and Python

10

CSC 433 Programming Languages Fall 2012

– primitive type with assignment and several operations

• Java

– primitive type (sort of) implemented in theString class

– Strings areimmutable

– mutable strings are provided by theStringBuffer class

• Perl, JavaScript, Ruby, PHP

– primitives with built-in pattern matching, using regular expressions

Enumeration Types
An ordinal typehas a range of possible values can be easily associated with the set of positive
integers. (e.g., Javaint, char, boolean).

With enumeration types, all possible values are provided in the definition.

C and Pascal were the first to useenums. A C example:

See Example:
/home/cs433/examples/enum

As we can see with C, these are often implemented by integers.

Use of enumeration types improves readability, and can improve reliability in certain cases. We
have essentially created a group of related named constants, and defined a datatype, instances of
which are restricted to the available types.

There are a few design decisions that need to be made for a language that supports this:

• ss an enumeration constant allowed to appear in more than onetype definition, and if so,
how is the type of an occurrence of that constant checked?

• are enumeration valuescoercedto integer?

• can other types be coerced to an enumeration type?

If the enumeation types are not coerced, this can allow better error checking (as in Java, C#) and
restriction of operations to those apprpriate for an enumeration rather than integers.

We can see the power of Javaenum types by looking at the examples at Oracle:

On the web: Enum Types at Oracle’s Java Tutorials at
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Subranges

11

CSC 433 Programming Languages Fall 2012

Closely related to enumeration types aresubrange types. These consist of an ordered, continuous
subsequence of an ordinal type.

For example in Pascal, we can define a variable such as:

var HoursWorked: 0..24;

This would define a variable that behaves much like aninteger, except that the compiler and
run-time system will not allow any value outside of the defined range.

See Example:
/home/cs433/examples/hello pascal

See Example:
/home/cs433/examples/pascal subrange

Ada provides a similar capability, as described in the text.

This has advantages in readability, efficiency (an appropriate internal storage can be chosen), and
program safety (we can avoid using a clearly incorrect value).

Arrays
Our next data type is the very familiar and widely usedarray construct. For a data type that has
such a wide usage, there are many variations and design decisions that lead to different implemen-
tations.

Our text describes an array as “a homogeneous aggregate of data elements in which an individual
element is identified by its position in the aggregate, relative to the first element.”

There are several major categories of arrays supported by various languages:

• Static

– ranges/allocation done at compile time

– e.g., C/C++ arrays withstatic keyword

– efficient: no dynamic allocation

• Fixed stack-dynamic

– static binding of subscript range (declaration time)

– e.g., normal C/C++ arrays declared as locals

– space efficient

• Stack-dynamic

12

CSC 433 Programming Languages Fall 2012

– run-time bindings for subranges and run-time allocation

– fixed for the entire life of the array

– e.g., Ada arrays

– flexibility advantage: need not know the array size until it is used

– but still allocated on the stack

• Fixed heap-dynamic

– allocation occurs by user specification, not at elaborationtime

– memory comes from heap, not stack

– e.g.C++ arrays created bynew, Java arrays

– similar to stack dynamic except allocated on the heap

• Heap-dynamic

– subscript ranges and memory allocation dynamic

– arrays can grow or shrink during execution

– very flexible, but more complex run-time

– e.g., Perl, JavaScript, Python, Ruby

The array notation needs to be resolved to addresses and values to be used.

Two options:

Address(X[n]) = Address(X[0]) + (n - 1) * element_size

or

Address(X[n]) = Address(X[0]) element_size + (n * element_size)

In the latter, the first part can be done at compile time in certain situations (faster array access).

A compile-time descriptor for a single-dimensional array needs (most of):

• element type

• index type

• index lower bound (forced to 0 in C/C++/Java)

• index upper bound

13

CSC 433 Programming Languages Fall 2012

• address

We also need to distinguish between rectangular and jagged multidimensional arrays.

• Rectangular arrays have congruent rows and columns

– e.g., Fortran, Ada, C#

– must distinguish row major (most languages)vs.column major linearization (Fortran)

• Jagged arrays can have different length rows

– essentially an array of arrays

– e.g., C++, Java

Additional array design issues:

• What types are legal for subscripts?

– Fortran, C: integer only

– Ada: integer or enumeration (includesBoolean andchar)

– Java: integer types only

• Are subscripting expressions in element references range checked?

– C, C++, Perl, and Fortran do not specify range checking

– Java, ML, C# specify range checking

– In Ada, by default it requires range checking, but can be turned off

• When are subscript ranges bound?

• What is the maximum number of subscripts?

• Can array objects be initialized?

e.g., in C, C++, Java, C#:

int a[] = {3, 9, 18, 21};

e.g., in Ada:

List : array (1..5) of Integer :=
(1 => 17, 3 => 34, others => 0);

• Is there support for heterogeneous arrays?

14

CSC 433 Programming Languages Fall 2012

– elements need not be all of the same type

– e.g., Perl, Python, JavaScript, Ruby

• Additional operations (beyond standard indexing)?

– array assignment (deepvs.shallow)

– array catenation

• Are any kind of slices supported?

Hashes/Associative Arrays
An associative arrayalso known as ahashis an unordered collection of data elements that are
indexed by an equal number of values calledkeys.

For example, a Perl program of mine defines this associative array:

%team_array = (’ATLANTA’,’Atlanta Falcons’,
’ARIZONA’,’Arizona Cardinals’,
’BALTIMORE’,’Baltimore Ravens’,
’BUFFALO’,’Buffalo Bills’,
’CAROLINA’,’Carolina Panthers’,
’CHICAGO’,’Chicago Bears’,
’CINCINNATI’,’Cincinnati Bengals’,
’CLEVELAND’,’Cleveland Browns’,
’DALLAS’,’Dallas Cowboys’,
’DENVER’,’Denver Broncos’,
’DETROIT’,’Detroit Lions’,
’GREENBAY’,’Green Bay Packers’,
’HOUSTON’,’Houston Texans’,
’INDIANAPOLIS’,’Indianapolis Colts’,
’JACKSONVILLE’,’Jacksonville Jaguars’,
’KANSASCITY’,’Kansas City Chiefs’,
’MIAMI’,’Miami Dolphins’,
’MINNESOTA’,’Minnesota Vikings’,
’NEWENGLAND’,’New England Patriots’,
’NEWORLEANS’,’New Orleans Saints’,
’NYGIANTS’,’New York Giants’,
’NYJETS’,’New York Jets’,
’OAKLAND’,’Oakland Raiders’,
’PHILADELPHIA’,’Philadelphia Eagles’,
’PITTSBURGH’,’Pittsburgh Steelers’,
’SANDIEGO’,’San Diego Chargers’,

15

CSC 433 Programming Languages Fall 2012

’SANFRAN’,’San Francisco 49ers’,
’SEATTLE’,’Seattle Seahawks’,
’STLOUIS’,’St. Louis Rams’,
’TAMPABAY’,’Tampa Bay Buccaneers’,
’TENNESSEE’,’Tennessee Titans’,
’WASHINGTON’,’Washington Redskins’);

This defines mappings between a token form of a football team’s name with the team’s full name.
Later in the program, it is used to translate the tokenized version (which is found in the program’s
data files) to the full name:

printf("<tr><td>$boldroad $team_array{$roadteam} $score1
$endboldroad</td><td>at</td><td>$boldhome
$team_array{$hometeam} $score2 $endboldhome</td>
<td>${gametime} PM</td></tr>\n");

Here, both$roadteam and$hometeam have been assigned values when reading a data file.

These can be very convenient to use.

Design issues include:

• What is the form of references to elements?

• Is the size static or dynamic?

• How can we access elements efficiently (likely answer: hashing)

For Perl, in the example above, we could add a new team to the association with:

$team_array{’LOSANGELES’} = ’Los Angeles Californians’;

And if we wanted to remove an element:

delete($team_array{’DALLAS’});

Python, Ruby, and Lua are other languages with direct supportfor associative arrays.

Records
A record is a (potentially) heterogeneous aggregate of data elements.

Examples include Pascal records, C/C++ structs, and C++ classes.

See Example:
/home/cs433/examples/ratios

In Ada:

16

CSC 433 Programming Languages Fall 2012

type Emp_Rec_Type is record
First: String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly_Rate: Float;

end record;
Emp_Rec: Emp_Rec_Type;

Individual members of a record can be accessed in various ways

• Of keyword in COBOL

• . operator in C/C++

Record storage is typically in a block of contiguous memory locations.

The names, types, and offsets (from the start of the record) associated with each field need to be
stored in a (likely compile-time) record descriptor.

Pascal examples:

On the web: Pascal Programming Lesson 11: Record Data Structure at
http://pascal-programming.info/lesson11.php

Note the use of either the. notation or awith construct to access fields.

What other operations might be included?

• assignment is often supported if the types are identical (fieldwise copy)

• Ada allows record comparison

• COBOL providesMOVE CORRESPONDING, which copies a field of the source record to
the corresponding field in the target record

Unions

A uniontype is similar to a record, but it can store different type values at different times.

Pascal provides this functionality with case variant records, C/C++ with theunion types.

An example from C:

union nodeTypeStruct {
DRUM_computingNode *compNode;
DRUM_networkNode *netNode;

} type;

17

CSC 433 Programming Languages Fall 2012

Here, this defines a datatype that could either contain aDRUM computingNode or aDRUM networkNode,
but never both. We treat it just like astruct except that the two fields share the same memory.
So a modification to either is a modification of both.

This is implemented by assigning largest possible memory unit needed, along with all descriptions
of possible types in the descriptor.

In C/C++/Fortran, unions arefree unions– that means we can access the data using any of the
names, regardless of which name was used to place the value into the union.

See Example:
/home/cs433/examples/union

A discriminated unionremembers what type is currently stored in the union (which must be tracked
in a run-time descriptor), and restricts access to that type. This is supported in Ada.

Since free unions are unsafe, they are not supported in Java or C#.

List Types
We already looked at lists in Scheme, so we will say little more here.

Pointers and References
A pointer is a type whose values consists of memory addresses and a special nil (or sometimes,
null) value. C/C++ pointers and Java references are prime examples.

Pointers allow forindirect addressing– the data is in the memory location referred to by the
contents of a pointer variable.

This provides the mechanism for dynamic memory allocation (e.g., malloc, new).

Important operations on pointers:

• assignment– set a pointer’s value to some useful address

– result of a dynamic memory allocation

– take address (&) of existing variable

– copy value from an existing pointer with a useful address

• dereferencing– “follow” the pointer. In C/C++, this is the* operator preceding a pointer
variable’s use

• pointer arithmetic– ptr++ – advances the pointer to the next memory location (relativeto
the data size of whatptr points to)

See Example:
/home/cs433/examples/isort

18

CSC 433 Programming Languages Fall 2012

There are some dangers associated with allowing pointers ina programming language:

• dangling reference– a pointer to memory no longer allocated for its previous purpose

int *x = (int *)malloc(10 * sizeof(int));
// use x
free(x);

// use of x here is a dangling reference

• memory leaks – allocate memory but never free it for reuse

• lost heap-dynamic variables – an allocated heap-dynamic variable that is no longer accessible
because we no longer are maintaining a pointer to that variable (i.e., it is garbage, and a
memory leakif nothing is done about it)

int *x, i;
for (i=0; i<10; i++) {

x = (int *)malloc(10 * sizeof(int));
// do other stuff?

}
// only the last allocated x is still accessible here

• casts to treat a pointer to one datatype as a pointer to another (as is allowed in C/C++)

References

• C++ includes a special kind of pointer type called areference typethat is used primarily for
formal parameters (more on this later)

• Java reference variables replace pointers entirely – all are references to objects, rather than
being addresses

• C# includes both the references of Java and the pointers of C++

References are more restrictive, and hence safer. No taking arbitrary addresses or pointer arith-
metic.

Dealing with Memory Leaks

We have seen that languages sometimes require dynamically allocated memory to be explicity
returned to the system (e.g., C’s free, C++’s delete), or have the system determine which
memory is still in use and reclaim what is no longer used (e.g., Java).

19

CSC 433 Programming Languages Fall 2012

The process used by Java (and many other languages) to reclaim memory is calledgarbage collec-
tion.

Approaches:

• reference counters(eager approach)

– maintain a counter for each allocation unit, if counter goesto 0, unit can be reclaimed

– approach suffers from space/time considerations

– circular lists lead to reference counting problems

– process is incremental, so costs are spread over time

• mark-sweep(lazy approach)

– allocation continues until heap space becomes low

– when a garbage collection is triggered

∗ mark all allocation units for removal

∗ follow all pointers, unmarking any reachable unit

∗ when no more pointers to trace, deallocate remaining markedallocation units

– main disadvantage: it is an expensive process that causes the program to pause its
execution for a significant time, though this can be reduced by running periodically not
just when memory available becomes very low

Garbage collection has been an active area of research in programming language design for many
years – we are just scratching the surface of the approaches and ways to do it more efficiently.

20

