
Computer Science 432/563
Operating Systems
The College of Saint Rose

Spring 2016

Topic Notes: Protection and Security

The operating system is (in part) responsible for protection – to ensure that each object (hardware

or software) is accessed correctly and only by those processes that are allowed to access it.

We have seen protection in a few contexts:

• memory protection

• file protection

• CPU protection

We want to protect against both malicious and unintentional problems.

Protection Domains

There are a number of ways that an OS might organize the access rights for its protection system.

A domain is a set of access rights and the objects (devices, files, etc.) they refer to.

An abstract example from another text (Tanenbaum):

This just means that processes executing in, for example, domain 1, can read file1 and can read

and write file2.

The standard Unix protection system can be viewed this way. A process’ domain is defined by its

user id (UID) and group id (GID).

Files (and devices, as devices in Unix are typically accessed through special files) have permissions

for: user, group, and other. Each can have read, write, and/or execute permission.

A process begins with the UID and GID of the process that created it, but can set its UID and

GID during execution. Whether a process is allowed a certain type of access to a certain file is

determined by the UID and GID of the process, and the file ownership and permissions.



CS 432 Operating Systems Spring 2016

The superuser (UID=0) has the ability to set processes to any UID/GID. Regular users usually rely

on setuid and setgid programs in the filesystem to change UID/GID.

An executable file with the setuid (setgid) bit set will execute with the effective UID (GID) of the

file’s ownership rather than the process that runs it.

See Example:

/home/cs432/examples/setuid

In this example, we see the use of several system calls related to user and group ids.

We can get our uid, effective uid, and gid with system calls.

The uid is the user who started the process and that user’s default group.

The effective uid can be changed if the setuid bit is set on the program file.

We can set the uid and gid bits of the file with chmod and chgrp commands.

Example: see /usr/X11R6/bin/xterm on your favorite Unix system. Yes, each time you

start an xterm, you’re the superuser (!), at least for a few moments.

Recall that almost everything in the Unix world that requires protection by the OS uses the file

system and its permissions:

• ttys (mesg/write)

• named pipes/semaphores

• process information (procfs)

Other possible protection mechanisms:

• protection matrix

• access control lists

• capabilities

See SG&G for details on these. Not urgent for us.

In any case, the OS must enforce the protection mechanism as appropriate.

Security

How can we define a system to be secure?

One possibility: all resources are used only exactly as intended

A secure system should not allow:

2



CS 432 Operating Systems Spring 2016

• unauthorized reading of information

• unauthorized modification of information

• unauthorized destruction of data

• unauthorized use of resources

• denial of service for authorized uses

Security: Authentication

Key aspect of security: Indentifying the user to the system.

Most common method: passwords

• passwords stored in an encrypted form - cipher text

• one-way encryption algorithm: easy to convert “clear text” password to cipher text, hard to

convert back

• alternately, one-time passwords may be used – see crypto card, securid

In Unix, see crypt(3) for more information about the encryption used. See /etc/passwd or

/etc/shadow (/etc/master.passwd in FreeBSD) for password files.

Security is compromised if passwords are compromised. There are many ways that this can hap-

pen:

• passwords written down

• typing simple passwords with someone watching

• run a “crack” program, encrpyting possible passwords, comparing to encrypted entries in

the password file – many sysadmins do this periodically to look for guessable passwords on

their systems

• packet sniffers – “watch” password get typed if clear text passwords are written to a shared

network

• more recent problem: many web sites use passwords, meaning more chance that some pass-

words are stored in clear text or are even gathered by malicious web site operators or even

more likely to be written down or stored somewhere

• trojan horse to gather passwords

• spoof/phishing web sites and e-mails

3



CS 432 Operating Systems Spring 2016

Security: Threats

There are constantly threats in our day-to-day use of technology. These can include:

• Stealing your system

– vandalism

– for-profit exploitation

• Stealing your information

– identity theft

• Stealing your time

– Spam – unsolicited email

– denial of service attacks

Many common security threats involve “rogue code” or malware (malicious software) running on

a computer.

• Infectious software

– viruses and worms

– spread by “making copies” of themselves like a real virus

• Concealment software

– trojans – rogue software made up to look like something else – see example below

– rootkits – change the OS to hide the rogue software’s existence

– backdoors or trap doors – special “ways in” to the system left by programmers, com-

pilers, or malicious users – consider “easter eggs” – could be malicious and be used to

bypass your security

• For Profit

– Phishing – spoofing you into believing you are going somewhere you aren’t

– Adware – malicious advertisements on your browser

– Spyware – log keystrokes and report over the net

– Scareware – protection racket

How might the “bad guys” attack you?

4



CS 432 Operating Systems Spring 2016

• “Crack” your password

– essentially keep trying possibilities until it works

– How hard is it to crack yours?

– How do you make a really strong password?

• Trick you into “opening the door”

– Trojan “Games” “P2P” “Tool Bars”

– Look alike web pages for Banks, Paypal, etc.

– Device drivers from the net

– Scam emails the Nigerian prince, webmail quota, etc.

– Malicious attachments to email messages: programs disguised as images or movies

• Bugs (errors) in an operating system or system services

– These would often run in a priviledged mode (i.e.administrator, superuser)

– Attacker has an exploit for one of these bugs that allow the attacker to perform his own

actions, now in that priviledged mode

Simple trojan horse example: if . is in your search path, someone (maybe me) can replace some-

thing like ls when you’re in our directory

If a system is compromised, many system programs could be “trojaned” – things like top, ps,

might be included to make it harder to detect an intruder

We will see more about stack and buffer overflows in this week’s lab. These are the “way in” for

many security problems over the last few decades.

And what can you do to protect yourself?

• Filter out the threats

– Firewalls

∗ restrict the network services you accept

∗ examine packets before they get “unpacked” and sent to their target application

∗ can be done in hardware (routers block some ports or addresses) or software (OS

kernel blocks some ports and/or addresses)

∗ generally good to block all services except those you definitely need and use

– Spam filters

∗ e.g.Postini – a software service provided by Google

∗ e.g.SpamAssassin – free software to plug into mail servers

∗ services such as Gmail provide filtering

5



CS 432 Operating Systems Spring 2016

∗ what about false positives?

– restrict browser capabilities from all but trusted sources

∗ avoid accepting cookies

∗ block scripts with tools like NoScript

∗ delete personal information (history, autofill)

• Detect and Remove

– Virus scan software

∗ has to scan your whole file system

∗ needs constant updates

– Spyware/Adware detection and removal

• Keep operating system, browser, and other software up-to-date

– “patch” to stop newly discovered “exploits”

• Good password practices

– Use a “hard to crack” password that is not a dictionary word, using upper- and lower-

case letters, numbers, punctuation

– Don’t use the same password everywhere – if one is compromised the attacker would

have access to many other things

– Too complex and you can’t remember it and have to write down – even worse! How

secure is that paper, or that file called passwords on your desktop?

– Some ideas:

∗ use the first letter of a sequence of words mixing in caps, numbers, punctuation

∗ have a pattern that is similar for many of your accounts but which has some site-

specific change you can make for each

∗ have some “throwaway” passwords to use for registrations that do not require much

security

∗ be sure to use strong passwords for services like banking, email, etc.

– Authentication using more than passwords to establish identity

∗ a password is something you know

∗ can also require something you are: biometrics

∗ can also require something you have: single-user password generators

It is not only individual computers that present significant security risks.

• Denial of service (DoS) attacks, often directed against web servers

6



CS 432 Operating Systems Spring 2016

– one method: direct a fast stream of bogus requests to a server so it cannot service

legitimate requests either at all or at least not in a timely fashion

• Botnets – networks of computers controlled by a central coordinator

– can be legitimate: SETI@Home and similar distributed computing projects

– often attackers gain control of computers (turning them into “robots”, hence the name)

and use them to perform a variety of malicious acts

– launch distributed denial of service (DDos) attacks

– generate large volumes of spam email

– botnet “owner” may simply “rent out” the botnet for use

– July 2010: operator of 12-million node botnet Mariposa arrested

So who are these “bad guys” using these techniques to steal data and access?

• Professional hackers

– organized crime

– former government agents

– fired former employees

– often are very skilled programmers

• “Script Kiddies”

– often bored teenagers who find hacker scripts and try them

– usually essentially vandals

• Marketers

What are the targets for theft, and what good is each to the theives?

• Credit/Debit card numbers

– to make fraudulent charges

• Social Security Numbers and similar personal identifiers

– to establish bogus accounts, make fraudulent charges

• Access to computers

– use your computer, not their own, to commit fraud or break the law

7



CS 432 Operating Systems Spring 2016

– pass through to cover tracks

• Web surfing/online shopping data

– improve targeted marketing

Unfortunately, loss of personal information is very common and does lead to identity theft.

Many attacks are not strictly electronic – they have a physical component as well:

• Stealing physical hardware

– laptops, flash memory sticks, PDAs

• Office break-ins

– steal passwords from desks

• Dumpster diving

A few more important terms with examples:

• Intrusions: the hacker uses electronic or physical means to compromise a system

– an effective way to compromise a system is to steal the username and password of a

legitimate user

– easy to cover your trail

– password cracking (guessing) is a common example

– programs can try millions of combinations very quickly before being noticed

• Phishing: techniques for getting a user to disclose information, like passwords

1. Hacker creates a website that looks just like your bank (e.g.http://www.citi.

com.IPAddress.net)

2. Send spam email to 20 million people telling them that they have to visit the site and

log in for whatever reason

3. Even if 0.001% of the people respond, this steals 20,000 bank passwords!

Also, create the fraudulent site on someone else’s server (perhaps in a botnet), to make it

harded to catch.

• Eavesdropping: techniques for intercepting passwords

– One possibility: create a public wireless access point with a nice, tempting name like

“FreePublicWifi”

8



CS 432 Operating Systems Spring 2016

– Users connect, and this access point monitors everything they do

– Lesson: always assume that your network traffic is being monitored, especially when

connecting to unknown wireless access points!

Discussion topic: Open Source vs. Proprietary systems for security?

Encryption

Recall that Internet traffic of all kinds is broken down into packets, and sent through a series of

routers from source to destination. We won’t talk in detail about networks here, that’s a whole

course, but one of the problems with communicating across many of today’s networks is that the

information on the network can be seen not only by its intended recipient, but also by many other

computers. Each router along the way and possibly other computers on the same networks as the

source and destination will be able to see these packets of information. We must assume that any

packet that gets sent onto the network will not only be readable by the destination computer but by

pretty much anyone. Tools such as packet sniffers can turn any computer into a packet spy on the

network.

Combine this fact with the fact that we send information over the Internet all the time that we do

not want made public, and it’s clear that something must be done to keep our Internet traffic a bit

more private.

Any data that should not be exposed to the public needs to be encrypted.

We have seen that Unix stores password entries in an encrypted form.

Encryption has been used for this purpose for centuries, often with the messages being military

orders.

Even when a network is not involved, someone may want to encrypt files for privacy.

Encryption allows some data, which we will call clear text to be modified into encrypted and

seemingly unintelligible cipher text. This cipher text can then be sent across a network or stored

on a device, and if anyone sees it, they will be unable to ascertain its meaning. Of course, to be

useful, we will also need some way to convert the cipher text back to the original clear text (the

process of decryption).

Conventional Encryption

Encryption
Algorithm

Decryption
Algorithm

Clear
text

Cipher
text

Clear
text

Secret
Key

Secret
Key

The cipher text is a function of the clear text, the encryption algorithm, and the secret key. The

9



CS 432 Operating Systems Spring 2016

algorithm is public! Or at least a good scheme should not rely on the secrecy of the algorithm. It’s

just the key that is kept secret.

The clear text is a function of the cipher text, the decryption algorithm, and the same secret key.

Again, the algorithm is public. The decryption returns the original clear text.

For the encryption to be strong enough, it must be very difficult to figure out the secret key, even

given a bunch of cipher texts and the algorithm. Two approaches that an adversary may use are

cryptanalysis, where properties of the clear text and the nature of the algorithm are examined to

deduce the secret key, and a brute-force attack, where every possible key is tried until one works.

For an n-bit key, this means up to 2
n keys must be tried, making brute-force attacks expensive. But

modern hardware can break a 56-bit key in just a few hours.

Examples:

• The Data Encryption Standard (DES) – 56-bit secret key. Selected by US Gov’t in 1977.

Broken in 1998.

• New Advanced Encrpytion Standard (AES) – key sizes of 128, 192, or 256 bits. A com-

petition was held, and Rijndael was selected in 2001 as the new standard. See more at

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Problem: how do we tell the intended recipient of our messages what our secret key is, without

telling all the world what our secret key is? Perhaps this can be sent securely by some other means,

but perhaps the only communication channel is the one we do not trust that led us to employ

encryption in the first place.

Public-Key Encryption

Dilbert

Encryption
Algorithm

Decryption
Algorithm

Clear
text

Cipher
text

Clear
text

Dilbert’s
Public Key

Dilbert’s
Private Key

Alice

Instead of a single key, we have a public key and a private key. The public key is, well, public

– anyone who wants to have it, can have it. But the private key is never shared. This idea was

proposed in 1976 by Diffie and Hellman.

To transmit a message securely from Alice to Dilbert:

1. Alice and Dilbert each compute their public key-private key pair. Each publishes its public

key for all the world to see.

10



CS 432 Operating Systems Spring 2016

2. Alice looks up Dilbert’s public key, and uses it to encrypt the message.

3. Dilbert receives the message, and uses his private key to decrypt.

But what if Catbert intercepts the message?

Alice

Encryption
Algorithm

Cipher
text

Clear
text

Dilbert’s
Public Key

Decryption
Algorithm

Clear
text

Dilbert’s
Private Key

Dilbert

Decryption
Algorithm

Clear
text

Dilbert’s
Private Key????

Catbert

Everything is just fine – even though Catbert, the evil director of Human Resources, has the cipher

text and he can have Dilbert’s public key, he does not have Dilbert’s private key. So he has no way

to intercept the message.

The most popular public-key algorithm is the Rivest-Shamir-Adleman (RSA) Algorithm. It uses the

fact that it is relatively easy to compute numbers that are products of large primes, but very difficult

to factor the number into those primes.

Secure shell works this way – when you set up ssh, your computer computes its public key and

private key. When another computer wants to communicate securely with yours, they exchange

public keys and they’re off.

There’s still a potential problem with the distribution of public keys. Suppose Alice decides to send

Dilbert a message for the first time, so she needs his public key. When she makes that request,

maybe Dilbert is out of the office, but Catbert pretends to be Dilbert (“spoofs” his address) and

sends his own public key instead. Since Alice didn’t know it came from Catbert instead of Dilbert,

she gladly encrypts messages intended for Dilbert using the bad public key, and Catbert sits in his

office decrypting, soon to fire Alice for what she said about him. This is known as a man in the

middle attack.

We need a way for everyone involved to ensure that the others with whom they are communicating

are who they say they are.

The mechanism most commonly used involves digital signatures or certificates of authority. A

secure certificate authority (a popular one is called Verisign) gives a “certificate” to a computer

that it can present to any other computer to prove that it is who it says it is. Sort of an electronic

identication card.

11



CS 432 Operating Systems Spring 2016

When starting a connection with a server, we would request its certificate and compare to the

certificate for that server from the certificate authority. If they match, we can be confident that

we’re exchanging information with the computer we think we are exchanging information with.

Once we’ve done that, we can exchange public keys and continue on and have a safely encrypted

conversation.

Your web browser does this all the time. If you are going to a web site where you are going to pass

sensitive information across the network, you will likely connecting using https, the secure http,

instead of standard http.

When you connect to a web server using https, your browser will make sure that the server is

who it says it is by making sure the certificate matches one we have seen from that server in the

past, or by checking with the certificate authority if we have never visited that server before. It

can then use the secure socket layer (SSL) connection to communicate securely using a random

encryption key (good for just the one session).

Note that modern browsers indicate that a connection is using https by putting a little padlock on

the screen. Any time you are going to send information over the Internet that you would not want

to be seen by everyone in the world, make sure it is going over an https encrypted connection!

There is a lot more to discuss about encryption, but most of it does not really fit into this course.

12


