
CS 432 Operating Systems Spring 2005

Lab 7 – Memory Management
Due: 9:55 AM, Thursday, April 21, 2005

This week’s lab consists of practice questions to look at on your own (not to be turned in)
and questions to be submitted. Your answers should be submitted in a PDF file lab7.pdf.

Practice Questions

• A computer system has enough room to hold four programs in its main memory. These
programs are idle waiting for I/O half the time. What fraction of the CPU time is
wasted?

• SG&G 8.3, 8.7, 8.9, 8.10, 8.11, 9.4, 9.12

Lab Questions

Prepare written answers to the following questions and include them in your submitted PDF
file.

1. SG&G 9.10 (2 points)

2. SG&G 9.14 (2 points)

3. SG&G 9.15 (2 points)

4. Read Chapter 3 of the Intel Architecture Software Developer’s Manual, Volume 3:

System Programming Guide. This chapter describes hardware support for memory
management in the 32-bit Intel processor family. It is heavy reading, but don’t get
bogged down in too much of the detail, just look for applications of the concepts we
talked about in class. The document may be found in /home/faculty/terescoj/-

shared/cs432/labs/lab7/intel-manual.pdf or at http://developer.intel.com/
design/pentium4/manuals/index_new.htm. Important: please don’t print this

whole document. It’s over 800 pages! You need only look at Chapter 3, and
maybe you can look at it electronically.

Again, don’t get bogged down in too much detail, but describe in a few paragraphs how
IA-32 processors support the memory management concepts we have been discussing.
(6 points)

Working Set Simulator Consider the following program segment, written in a C-like
language:

const int n=10;

int i, j, A[n], B[n], C[n], temp;

1

CS 432 Operating Systems Spring 2005

for (i=1; i<=n; i++) {

A[i]=i;

B[i]=n-i+1;

}

for (i=1; i<=n; i++) {

temp=0;

for (j=i; j<=n; j++) {

temp=temp+A[n+i-j]*B[j];

}

C[i]=temp;

}

Using a machine with registers denoted by Ri and a fixed instruction size of 1 word per
instruction, the machine language version of this program is loaded in virtual address space
(with page size 4K, i.e., 1024 words) as follows:

0x2FBC (R1) <- ONE Index i

0x2FC0 (R2) <- n Loop bound

0x2FC4 compare R1,R2 Test i>n

0x2FC8 branch_greater * + 0x20

0x2FCC A(R1) <- (R1) Compute A[i]

0x2FD0 (R0) <- n Compute B[i]

0x2FD4 (R0) <- (R0) - (R1)

0x2FD8 (R0) <- (R0) + ONE

0x2FDC B(R1) <- (R0)

0x2FE0 (R1) <- (R1) + ONE Increment i

0x2FE4 branch * - 0x20

0x2FE8 (R1) <- ONE Index i

0x2FEC (R2) <- n Loop bound

0x2FF0 compare R1,R2 Test i>n

0x2FF4 branch_greater * + 0x50

0x2FF8 (R0) <- ZERO temp <- 0

0x2FFC temp <- (R0)

0x3000 (R3) <- (R1) Index j

0x3004 (R4) <- n Loop bound

0x3008 compare R3,R4 Test j>n

0x300C branch_greater * + 0x20

0x3010 (R0) <- n Compute A[n+i-j]

0x3014 (R0) <- (R0) + (R1)

0x3018 (R0) <- (R0) - (R3)

0x301C (R5) <- A(R0)

0x3020 (R6) <- B(R3) Compute B[j]

0x3024 (R5) <- (R5) * (R6)

0x3028 (R5) <- (R5) + temp

0x302C temp <- (R5)

0x3030 (R3) <- (R3) + ONE Increment j

2

CS 432 Operating Systems Spring 2005

0x3034 branch * - 0x20

0x3038 C(R1) <- (R5) Compute C[i]

0x303C (R1) <- (R1) + ONE Increment i

0x3040 branch * - 0x50

...

0x6000 Storage for C

0x7000 Storage for ONE

0x7004 Storage for n

0x7008 Storage for temp

0x700C Storage for ZERO

0x8000 Storage for A

0x9000 Storage for B

Upon execution of this program segment, the following reference string is generated:

ω = 272722(28272272927222)n272722(272733733(373338393373737333)n−i+13637322)n

In /home/faculty/terescoj/shared/cs432/labs/lab7 you will find a C++ program that
simulates the run-time behavior of this program segment when a working set memory man-
agement policy is used. The program prints values:

∆ = window size
P (∆) = total number of page faults
W (∆) = average working set size

F (∆) = P (∆)
|ω|

= average page fault rate

The given main program takes the value of ∆ as a command-line parameter. This allows you
to write a script (in your favorite scripting language) that runs the program repeatedly for
the values of ∆ required. The value of ∆ is specified with the -d flag. A debugging mode is
turned on by -D. The program also takes a flag -n to specify n in the reference string used.
The default is 10, and you may use that to generate your plots. You are encouraged to try
other values of n, but you need only plot for n = 10.

Note that as each entry in the reference string (page) is processed, one of four things will
happen to the working set. (i) the page is added to the set, and none is removed, (ii) the
page is added to the set and one old page is removed, (iii) the page is already in the set and
another page is removed, or (iv) the page is already in the set and no other page is removed.

1. Use this program to plot the following curves: ∆ vs. P (∆), ∆ vs. W (∆), ∆ vs.
1/F (∆), for ∆ ranging from 1 to 200. (6 points)

2. From the plot of ∆ vs. 1/F (∆), explain the cause of all knees in the graph in terms of
program (or reference string) structure. (5 points)

3. Is the strategy used by this program one that could be used by a real system to keep
track of a process’ working set? Why or why not? (2 points)

3

