
CS 432 Operating Systems Spring 2005

Lab 0 – Getting Reacquainted with C and Unix
Due: 9:55 AM, Tuesday, February 8, 2005

1. Send me mail at terescoj@cs.williams.edu with a brief (a couple sentences) indication
of your level of experience with the Unix operating system and its variants, plus a list
of other operating systems you have used. Also include list programming languages
you have used and your proficiency in each, and anything else you’d like me to know
about your background coming in. (0 points)

2. (0 points) Log into and familiarize yourself with your CSLab Unix account.

• Forward your CSLab electronic mail to an address you read regularly. I may
sometimes use your @cs.williams.edu address and will expect that you will read
what it sent there on a regular basis. The class mailing list may also use this
address.

• Try FreeBSD systems in the lab (see the online version for a link to a list of
machines) and the Solaris cluster (bullpen). Connect remotely from anywhere
using your favorite ssh client, and log into the consoles in TCL 312.

• Identify the function of and experiment with these Unix Commands:

ls cd cp mv rm mkdir pwd

man chmod cat more grep head tail

ln find rmdir wc diff tar

• Emacs is a powerful text editor that you probably want to become familiar with.
Identify the function of and experiment with these Emacs Commands:

C-x C-s C-x C-c C-x C-f C-x C-w C-g C-a C-e

C-d C-_ C-v M-v C-s C-r M-%

Learn these commands – you will use them often. Hints can be found in the Unix
and Emacs web pages on the course website.

• Create a directory in your account for work from this class. Change the permis-
sions on the directory so only you have read or write access to it.

3. Copy the C program on the online version of this page that computes the late penalties
for this course to your CSLab Unix account. Compile and run it, redirecting your
output to a file late.txt. (1 point)

4. Copy the file on the online version of this page to your CSLab Unix account, either
from this link, or from /home/faculty/terescoj/shared/make-example.tar. It is a
“tar file” of a small C program that demonstrates the use of multiple source files and
Makefiles. Extract the files (tar xvf make-example.tar) and compile the program
with make. In a plain text file called make.txt, briefly describe how make uses the
rules in the Makefile to produce the executable main. (1 point)

1



CS 432 Operating Systems Spring 2005

5. You’ve all used Java applications that take command-line parameters. Write a C
program that takes an arbitrary number of command-line parameters, each of which
should represent an integer value. Print out the sum of the values provided. Call
your C program argadder.c and include a Makefile that guides compilation of your
program into an executable argadder. (3 points)

Hint: See main.c in the make example, and note that the parameter argc to the main

function is a count of how many command-line strings are included in the argv array
of strings. Also, argv[0] is not the first parameter, it is the program name itself, and
the program name is included in the value of argc.

To submit this lab, create a “tar file” called lab0.tar that contains your files to be submitted
(late.txt, make.txt, argadder.c, Makefile). To do this:

tar cvf lab0.tar late.txt make.txt argadder.c Makefile

Then use the turnin utility on any FreeBSD system in the lab to submit your work:

turnin -c 432 lab0.tar

Please use the filenames specified here and all semester. Don’t include your name in the
tar file name. The turnin utility will store things in a subdirectory based on your Unix
userid. Consistent filenames make my job when extracting everything for grading, and you
don’t want to annoy your grader with misnamed or missing files just before he grades your
assignment.

2


