Homework 3 due Tuesday, October 1, 2002, 12:01 AM

Turn in your source code for the first question (interleaving.c). Your answers to the other questions should be submitted as a plain text file hw03.txt, a postscript file hw03.ps, or a PDF file hw03.pdf.

1. Write a C program that will list all possible orderings of the machine instructions generated for the critical sections of the Producer-Consumer example from class. Recall that the statements counter++ and counter-- actually generate machine code such as

Producer	Consumer
P_1 R0 = counter;	C_1 R1 = counter;
P_2 R0 = R0 + 1;	C_2 R1 = R1 - 1;
P_3 counter = R0;	C_3 counter = R1;

Your program should list all possible interleavings of the statements P_1 , P_2 , P_3 , C_1 , C_2 , and C_3 . Also have your program print which interleavings produce a correct result (that counter has the same value it started with).

Write your program in a file called interleaving.c. (8 points)

2. Consider the Bakery Algorithm from class. Explain why the following is true:

If P_i is in its critical section, and P_k $(k \neq i)$ has already chosen number $[k] \neq 0$, then (number [i], i) < number [k], k).

This does not need to be a formal proof, just a convincing explanation. (3 points)

- 3. Tanenbaum, Exercise 6, p. 153. (1 point)
- 4. Tanenbaum, Exercise 8, p. 153. (1 point)
- 5. Tanenbaum, Exercise 11, p. 154. (1 point)
- 6. Tanenbaum, Exercise 21, p. 154. (1 point)