Computer Science 431

Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Dynamic Programming

We next considedynamic programminga technique for designing algorithms to solve problems
by setting up recurrences with overlapping subproblemsl{sminstances), solving those smaller
instances, remembering their solutions in a table to avwdmputation, then using the subprob-
lem solutions from the table to obtain a solution to the or@diproblem.

The idea comes from mathematics, where “programming” mgaaaning”.

Simple Example: Fibonacci Numbers

You have certainly seen the Fibonacci sequence before edidbiyr

F(n)=F(n—-1)+ F(n—2)
F(0) =0
F(1)=1

A direct computation using this formula would involve reqauation of many Fibonacci numbers
beforeF'(n).

But if instead, we store the answers to the subproblems inla ebothis case, just an array), we
can avoid that recomputation. For example, when we compte, we first needt'(n — 1), then
F(n — 2). But the computation of'(n — 1) will also have computed’(n — 2). With a dynamic
programming technique, that answer will have been stoed;(s — 2) is immediately available
once we have computed it once.

With the Fibonacci sequence, we can take a complete “botfrapproach, realizing that we will
need answers to all smaller subproblerA$() up to F'(n — 1)) in the process of computing(n),
we can populate an array with 0 in element 0, 1 in element 1adrsdiccessive elements with the
sum of the previous two. This makes the problem solvableniggli time, but uses linear space.

Moreover, with this approach, we need only keep the mositeee numbers in the sequence,
not the entire array. So we can still get a linear time sotutionstant space.

Binomial Coefficients

Another example you've probably seen before is the comjoutadf binomial coefficientsthe
valuesC'(n, k) in the binomial formula:



CSC 431 Algorithms Spring 2013

(a+0b)" = C(n,0)a" + -+ C(n, k)a" *bF + .. + C(0,n)b".

These numbers are also th& row of Pascal’s triangle.

The recurrences that will allow us to compute C(n,k):

Cn,k)=Cn—1,k—=1)+C(n—1,k) for n>k>0

As with the Fibonacci recurrence, the subproblems are appithg — the computation @f (n —
1,k —1)andC(n — 1, k) will involve the computation of some of the same subproble®s a
dynamic programming approach is appropriate.

The following algorithm will fill in the table of coefficientseeded to comput€(n, k):

bi nom al (n, k)
for i=0 to n
for j=0 to mn(i, k)

if j==0 or j==i
qillj] =1
el se

Ailljl =dqi-1][j-1] + qi-1][j]

]
return C[i]][k]

It's been a while since we did a more formal analysis of anrilgm’s efficiency.

The basic operation will be the addition in tleé se. This occurs once per element that we
compute. In the first + 1 rows, the inner loop executégimes. For the remaining rows, the
inner loop executek + 1 times. There are no differences in best, average, and wassscwe go
through the loops in their entirety regardless of the input.

So we can compute the number of additiol(s, k) as:

i=1 j=1 i=k+1 j=1
k n

=) (i—1)+ Z k
i=1 i=k+1
(k — Dk




CSC 431 Algorithms Spring 2013

Knapsack Problem
We now revisit theknapsack problegrwhich we first considered with a brute-force approach.
Recall the problem:

Givenn items with weightsu,, ws, ..., w, and values, v, ..., v,, what is the most vaulable subset
of items that can fit into a knapsack that can hold a total widigh

When we first considered the problem, we generated all pessiltisets and selected the one that
resulted in the largest total value where the sums of them®igere less than or equalltg.

To generate a more efficient approach, we use a dynamic pnogireg approach. We can break
the problem down into overlapping subproblems as follows:

Consider the instance of the problem defined by firgms and a capacity (j < W).

Let V'[z, j] be optimal value of such an instance, which is the value ofpimal solution consid-
ering only the first items that fit in a knapsack of capacity

We can then solve it by considering two cases: the subprotilatrincludes theé'® item, and the
subproblem that does not.

If we are not going to include th&" item, the optimal subset’s value (considering only itgns
throughi — 1) would beV[i — 1, j].

If we do include itemt (which is only possible iff —w; > 0), its value is obtained from the optimal

subset of the first — 1 items that can fit within a capacity ¢f— w;, asv; + V[i — 1,j — w;].

It's also possible that th&" item does not fit (wherg¢ — w; < 0), in which case the optimal subset
isVI[i—1,j].

We can formulate these into a recurrence;
’ V[i—1,7] if j—w; <0
Combine with some initial conditions:
V1[0,5] =0forj >0, V][i,0] = 0fori > 0.
The solution to our problem is the valu&n, W1.

The text has an example in Figure 8.5, where the solutiontgirdd in a “bottom up” fashion,

filling in the table row by row or column by column, until we getir ultimate answer at in the
lower right corner. This guarantees we will compute eactpraliiem exactly once and is clearly
©(nWV) in time and space.

One problem with that approach is the fact that we are comgugome subproblems that will
never be used in a recurrence starting frigifn, 1].



CSC 431 Algorithms Spring 2013

An alternate approach, this time working from the top (thletsan) down (the subproblems), is to
solve each subproblem as it's needed. But...to avoid rectngpsubproblems, we remember the
answers to subproblems we have computed and just use themtindyeexist.

The approach uses a technique calteeimory functionsThese work just like regular functions,
but do what we described above. At the start of the functidapks to see if the requested instance
has already been solved. If so, we just return the previecmigputed result. If not, we compute
it, save it in the table of answers in case it's needed agaam teturn the answer.

The following pseudocode implements this memory functaeaifor the knapsack problem:

A obal s:
W1l..n]: itemweights
values[1..n]: itemval ues
V[O..n][0..W: subproblem answers, starting all 0's in first row col,
-1's el sewhere
nf _knapsack(i,|)
if (Mil[j] <0)

if () <WiJ)
VIi][j] = nf_knapsack(i-1, j)
el se

V[i][j] = max(nf_knapsack(i-1, j),
values[i] + nf_knapsack(i-1, j-Wi]))
return V[i][j]

Applying this approach to the text's example results in drilyof the 20 values that were not initial
conditions are computed, but only one value is reused (Ei§8). Larger instances would result
in more subproblems being unneeded and more being reused.



