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Topic Notes: Dynamic Programming

We next considerdynamic programming, a technique for designing algorithms to solve problems
by setting up recurrences with overlapping subproblems (smaller instances), solving those smaller
instances, remembering their solutions in a table to avoid recomputation, then using the subprob-
lem solutions from the table to obtain a solution to the original problem.

The idea comes from mathematics, where “programming” means“planning”.

Simple Example: Fibonacci Numbers
You have certainly seen the Fibonacci sequence before, defined by:

F (n) = F (n− 1) + F (n− 2)

F (0) = 0

F (1) = 1

A direct computation using this formula would involve recomputation of many Fibonacci numbers
beforeF (n).

But if instead, we store the answers to the subproblems in a table (in this case, just an array), we
can avoid that recomputation. For example, when we computeF (n), we first needF (n− 1), then
F (n − 2). But the computation ofF (n − 1) will also have computedF (n − 2). With a dynamic
programming technique, that answer will have been stored, so F (n − 2) is immediately available
once we have computed it once.

With the Fibonacci sequence, we can take a complete “bottom up” approach, realizing that we will
need answers to all smaller subproblems (F (0) up toF (n− 1)) in the process of computingF (n),
we can populate an array with 0 in element 0, 1 in element 1, andall successive elements with the
sum of the previous two. This makes the problem solvable in linear time, but uses linear space.

Moreover, with this approach, we need only keep the most recent two numbers in the sequence,
not the entire array. So we can still get a linear time solution constant space.

Binomial Coefficients
Another example you’ve probably seen before is the computation of binomial coefficients: the
valuesC(n, k) in the binomial formula:
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(a+ b)n = C(n, 0)an + · · ·+ C(n, k)an−kbk + · · ·+ C(0, n)bn.

These numbers are also thenth row of Pascal’s triangle.

The recurrences that will allow us to compute C(n,k):

C(n, k) = C(n− 1, k − 1) + C(n− 1, k) for n > k > 0

C(n, 0) = 1

C(n, n) = 1

As with the Fibonacci recurrence, the subproblems are overlapping – the computation ofC(n −
1, k − 1) andC(n − 1, k) will involve the computation of some of the same subproblems. So a
dynamic programming approach is appropriate.

The following algorithm will fill in the table of coefficientsneeded to computeC(n, k):

binomial(n,k)
for i=0 to n

for j=0 to min(i,k)
if j==0 or j==i

C[i][j] = 1
else

C[i][j] = C[i-1][j-1] + C[i-1][j]
return C[i][k]

It’s been a while since we did a more formal analysis of an algorithm’s efficiency.

The basic operation will be the addition in theelse. This occurs once per element that we
compute. In the firstk + 1 rows, the inner loop executesi times. For the remaining rows, the
inner loop executesk + 1 times. There are no differences in best, average, and worst cases: we go
through the loops in their entirety regardless of the input.

So we can compute the number of additionsA(n, k) as:

A(n, k) =
k

∑

i=1

i−1
∑

j=1

1 +
n

∑

i=k+1

k
∑

j=1

1

=
k

∑

i=1

(i− 1) +
n

∑

i=k+1

k

=
(k − 1)k

2
+ k(n− k) ∈ Θ(nk).
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Knapsack Problem
We now revisit theknapsack problem, which we first considered with a brute-force approach.

Recall the problem:

Givenn items with weightsw1, w2, ..., wn and valuesv1, v2, ..., vn, what is the most vaulable subset
of items that can fit into a knapsack that can hold a total weight W .

When we first considered the problem, we generated all possible subsets and selected the one that
resulted in the largest total value where the sums of the weights were less than or equal toW .

To generate a more efficient approach, we use a dynamic programming approach. We can break
the problem down into overlapping subproblems as follows:

Consider the instance of the problem defined by firsti items and a capacityj (j ≤ W ).

Let V [i, j] be optimal value of such an instance, which is the value of an optimal solution consid-
ering only the firsti items that fit in a knapsack of capacityj.

We can then solve it by considering two cases: the subproblemthat includes theith item, and the
subproblem that does not.

If we are not going to include theith item, the optimal subset’s value (considering only items0
throughi− 1) would beV [i− 1, j].

If we do include itemi (which is only possible ifj−wi ≥ 0), its value is obtained from the optimal
subset of the firsti− 1 items that can fit within a capacity ofj − wi, asvi + V [i− 1, j − wi].

It’s also possible that theith item does not fit (wherej−w1 < 0), in which case the optimal subset
is V [i− 1, j].

We can formulate these into a recurrence:

V [i, j] =

{

max{V [i− 1, j], vi + V [i− 1, j − wi]} if j − w1 ≥ 0
V [i− 1, j] if j − wi < 0

Combine with some initial conditions:

V [0, j] = 0 for j ≥ 0, V [i, 0] = 0 for i ≥ 0.

The solution to our problem is the valueV [n,W ].

The text has an example in Figure 8.5, where the solution is obtained in a “bottom up” fashion,
filling in the table row by row or column by column, until we getour ultimate answer at in the
lower right corner. This guarantees we will compute each subproblem exactly once and is clearly
Θ(nW ) in time and space.

One problem with that approach is the fact that we are computing some subproblems that will
never be used in a recurrence starting fromV [n,W ].
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An alternate approach, this time working from the top (the solution) down (the subproblems), is to
solve each subproblem as it’s needed. But...to avoid recomputing subproblems, we remember the
answers to subproblems we have computed and just use them when they exist.

The approach uses a technique calledmemory functions. These work just like regular functions,
but do what we described above. At the start of the function, it looks to see if the requested instance
has already been solved. If so, we just return the previously-computed result. If not, we compute
it, save it in the table of answers in case it’s needed again, then return the answer.

The following pseudocode implements this memory function idea for the knapsack problem:

Globals:
W[1..n]: item weights
values[1..n]: item values
V[0..n][0..W]: subproblem answers, starting all 0’s in first row/col,

-1’s elsewhere
mf_knapsack(i,j)

if (V[i][j] < 0)
if (j < W[i])
V[i][j] = mf_knapsack(i-1, j)

else
V[i][j] = max(mf_knapsack(i-1, j),

values[i] + mf_knapsack(i-1, j-W[i]))
return V[i][j]

Applying this approach to the text’s example results in only11 of the 20 values that were not initial
conditions are computed, but only one value is reused (Figure 8.6). Larger instances would result
in more subproblems being unneeded and more being reused.
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