Computer Science 431

Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Divide and Conquer

Divide—and-Conqueis a very common and very powerful algorithm design techeidthe gen-
eral idea:

1. Divide the complete instance of problem into two (somesmmore) subproblems that are
smaller instances of the original.

2. Solve the subproblems (recursively).

3. Combine the subproblem solutions into a solution to thepteta (original) instance.

While the most common case is that the problem of size divided into 2 subproblems of size
5. Butin general, we can divide the problem irtGubproblems of siz&, wherea of those
subproblems need to be solved.

This leads to a general recurrence for divide-and-conguuri@ms:
T(n) = aT(n/b) + f(n), wheref(n) € ©(n?),d > 0.

When we encounter a recurrence of this form, we can usentister theorento determine the
efficiency class of "

T(n) =< O(n%logn) ifa="b

O(n?) if a < b?

O(nlsve) if g > b?
Application of this theorem will often allow us to do a quickadysis of many divide-and-conquer
algorithms without having to solve the recurrence in detail

M er gesor t

Each sorting procedure we have considered so far is an &ceplsort. They require onlé(1)
extra space for temporary storage.

Next, we consider a divide-and-conquer procedure that @e extra space in the form of a
second array.

CSC 431 Algorithms Spring 2013

It's based on the idea that if you're given two sorted arrgigs, can merge them into a third @(n)
time. Each comparison will lead to one more item being plasagits final location, limiting the
number of comparisons to— 1.

In the general case, however, this doesn’t do anything foetiarts to sort the original array. We
have completely unsorted data, not two sorted arrays toanerg

But we can create two arrays to merge if we split the array ifi balt each half independently,
and then merge them together (hence the need for the@ktraspace).

If we keep doing this recursively, we can reduce the “sort bfalhe array” problem to the trivial
cases.

This approach, thmerge sortwas invented by John von Neumann in 1945.
How many splits will it take? (log n)

Then we will haved (log n) merge steps, each of which involves sub-arrays totalingetsn, so
each merge (which will bé independent merges intoelement arrays) step h&gn) operations.

This suggests an overall complexity®fn logn).

Let’s look at pseudocode for this:

mergesort (A[0..n-1])
if n>1
copy first half of array Ainto a tenp array B
copy second half of array Ainto a tenp array C
nmer gesort (B)
nmer gesort (C)
nerge(B and Cinto A)

where the merge operation is:

merge(B[O0..p-1], CO0..q9.1], AO..(p*g-1)1])
while B and C have nore el enents
choose smaller of itenms at the start of B or C
renove the itemfromB or C
add it to the end of A
copy remaining items of Bor Cinto A

Let's do a bit more formal analysis of mergesort. To keepghisimple, we will assume that
n = 2k,

Our basic operation will be the number of comparisons thatirie be made.

The recurrence for the number of comparisons for a merge$arproblem of sizer = 2* is

C(n) =2C(n/2) + Cperge(n) forn>1,C(1) =0.

2

CSC 431 Algorithms Spring 2013

The best, worst, and average cases depend on how long wetheentain while loop in the merge
operation before one of the arrays is empty (as the remaelggents are then taken from the
other array with no comparions needed). Let’s consider thesticase, where the merge will take
n—1 comparisons (one array becomes empty only when the otherdiagle element remaining).
This leads to the recurrence:

Cworst(n) = 2Cuorst(n/2) +n—1 forn > 1,Cyuers(1) = 0.

The master theorem, gives is tl@t,,.(n) € O(nlogn).

Quicksort

Another very popular divide and conquer sorting algoritisnthiequicksort This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, sagath half, and then merged (where
all work is in the merge), quicksort works in the oppositeesrd

That is, quicksort splits the array (which takes lots of wornito parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part,fardguts them back together (trivially).

It proceeds by picking @ivot element, moving all elements to the correct side of the pret
sulting in the pivot being in its final location, and two sublplems remaining that can be solved
recursively.

A common and simple choice for the pivot is the leftmost eleméNe put it into its correct
position and put all elements on their correct side of thetpiv

Psuedocode for a quicksort:

qui cksort (A[l..r]) // we would start with I =0, r=n-1
ifl <
s = partition(A[l..r]) // s is pivot’s location
qui cksort (Al l..s-1])
qui cksort (Al s+1..r])

partition(A[l..r])
p=AI] [// leftnost is pivot

[l; j =r+1

do
doi++wuntil i =71 || Ai] >=p
do j-- until j =1 [] A[j] <=p

swap(A[i],Alj])
until i>5j
swap(Ali],Aj]) // undo | ast

CSC 431 Algorithms Spring 2013

swap(AlI'],A[j]) // swap in pivot
return j

Note: we always make a recursive call on a smaller array {lsueasy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than msagebecause the pivot will not always
wind up in the middle of the array (in the worst case, the pisdhe largest or smallest element).

Again, the basic operation will be the comparisons that d&ee in the partition.

Thepartiti on method is clearly©(n) because every comparison resultd ef t orri ght
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle.

This would lead to a number of comparisons according to tberrence:

Chest(n) = 2Cheat(n/2) +n forn > 1, Cheu(1) = 0.

By solving the recurrence or applying the Master Theorem, ne thatCj..;(n) € ©(nlogn),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksbraes like a selection sort. This
occurs with already-sorted input or reverse-sorted indat.analyze this case, think of the first
pass through the fulk-element array. The first elemer O] , is chosen as the pivot. The left-
to-right inner loop will terminate after one comparisom¢gA[0] is the smallest element). The
right-to-left inner loop will perform comparisons witj n- 1] , Al n- 2], ... all the way down to
Al 0] since we need to “move” the pivot item to its own position. f$ha+ 1 comparisons for the
partition step. In the process, the problem size is decddagé, so there will be: comparisons in
the next stepp — 1 in the third, and so on. We stop after processing the two-ehticase (requiring
3 comparisons), so the total comparisons is given by:

Cuworst(n) =(n+1)+n+---+3= (n+1)2(n+2) —3€0(n?

A careful analysis can show that quicksortd$n logn) in the average case (under reasonable
assumptions on distribution of elements of array). We caaged by assuming that the partition
can occur at any position with the same probabih}gy (This leads to a more complex recurrence:

1 n—1
Cong (1) = ~ S [0+ 1) + Cung () + Cang(n — 1 — 8)] f0F 1> 1, Clang (0) = 0, Cony (1) = 0.

s=0

We will not solve this in detail, but it works out to:

Cavg(n) = 2nlnn ~ 1.38nlog, n € O(nlogn).

4

CSC 431 Algorithms Spring 2013

Clearly, the efficiency of quicksort depends on the seleaf@good pivot. Improving our chances
to select a good pivot will ensure quicker progress. One wagot this is to consider three can-
didates (often the leftmost, rightmost, and middle eles)eand take the median of these three as
the pivot value.

Other improvements include switching to a simpléxx?)) sort once the subproblems get below
a certain threshold size, and implementing quicksorttitesty rather than recursively.

Quicksort is often the method of choice for general purposeng with large data sizes.

Binary Trees

No discussion of divide and conquer can proceed without @udson ofbinary treesand algo-
rithms on them.

We discussed the idea of tree data structures and introdotseof tree-related terminology at the
start of the semester. For now, we will just consider a fewrgXas.

We can make analysis convenient by defining a binary treetlasreéhe empty set, or a tree node
plus two other binary trees: a left subtree and a right sebtre

To find the height of a tree:

hei ght (T)
if (Tis enpty) return -1
el se return max(height(T.left),height(T.right)) + 1

To analyze this, we first note that the size of the problemesrnihmber of nodes in our treég,
denotedn(T).

The basic operation is either the comparison needed to fenchtx or the addition of 1 once we
find the max. A recurrence for either:

A(n(T)) = A(n(Tleft)) + A(n(T.right)) +1 forn(T) > 0, A(0) =0

Note, however, that there are in fact more checks to see tf¢leds empty than there are additions
or comparisons. That check happens at the base case only.

The number of additions/max comparisonn) = n, while the number of checks for an empty
tree:C(n) =2n + 1.

The other key divide and conquer operations are the re@lysilefined tree traversals, which we
discussed earlier:

1. preorder. visit the root, then visit the left subtree, then visit tight subtree.

2. in-order visit the left subtree, then visit the root, then visit thghti subtree.

5

CSC 431 Algorithms Spring 2013

3. postorder visit the left subtree, then visit the right subtree, thesit\the root.
Pseudocode is staightforward, for example:

i norder(T)
if (Tis not enpty)
inorder(T.left)
visit(T.root)
i norder (T.right)

Analysis is similar to that of height for this and for preor@md postorder. Each node is visited
once.

Strassen’s Matrix Multiplication

Our text describes a divide and conquer multiplication aféanumbers, but since you likely saw
that in discrete math, we will move along to consider Stma'ssmatrix-matrix multiplication.

This algorithm improves upon the standard matrix-matrixtiplication by observing that the
product of two2 x 2 matrices can be performed using 7 multiplications instdddeousual 8.

This in itself does not seem that significant, especiallynmwve consider that the standard algo-
rithm requires 4 additions, while Strassen’s algorithrnurezs 18 additions/subtractions.

The real benefit comes when we apply this idea to get a divideeanquer algorithm for multi-
plying matrices. To multiply 2. x n matrices, we break it into 4 x 7 matrices and use Strassen’s
algorithm to multiply them.

Our recurrence for the number of multiplications with thigoeoach:
M(n)=7M(n/2) forn>1, M(1)=1.
From which the Master Theorem (or a backward substitutiah)veld:
M(n) € ©(n'°27) ~ n*87,

Which is definitely a slower rate of growth th&nn?).

An analysis of the (larger) number of additions/subtraioesults in the same efficiency class:
A(n) € O(nle27),

Many other approaches have been invented with even smaiés of growth than Strassen’s algo-
rithm, but most have constant factors that make them imigeddor real usage.

Computational Geometry

CSC 431 Algorithms Spring 2013

We return to two familiar problems from computational getnypéo explore divide-and-conquer
solutions that are more efficient than the brute force amtresconsidered previously.

Closest Pairs
Our problem is to find among a set of points in the plane the totp that are closest together.

We begin by assuming that the points in the set are ordereddogasing: coordinate values. If
this is not the case, the points can certainly be sort&?(tnlog n) time as a preprocessing step.

We then divide the points into two subset§,and.S,, each of which contain§ points (which is
easy since the points are sortedibgoordinate).

We then recursively find the closest pair of points in eaclsst) andS;. If the distance between
the closest pair irt; = d; and the distance between the closest paitsin= d,. We then know
thatd = min{d;, d,} is an upper bound on the minimum distance between any paiwydéstill
need to make sure we check for shorter distances where onmeigoi S; and the other is iry5.

The only points which might be closer together than distahaee those within a strip of widtt
from the dividing line between the subsets. For each poititiwthat strip and within one subset,
we potentially need to consider all points from within thepstithin the other subset. That still
sounds like a lot of work. The key observation is that for epoint on one side, we have to
consider points whosg coordinates are withid. This will mean at most 6 points from the other
side, since if there are more points than that within they coordinate on the other side, at least
one pair from among that point would be closer than distaltceeach other.

So how do we find those points to check? They can be found quiickle also keep the points
sorted in order by coordinate. Still, this seems difficult but it can be donecéadfitly (see the
text’'s description for details).

We end up with a recurrence:

T(n) =2T(n/2) 4+ O(n)

which given an overall time df' (n) € O(nlogn).

Quickhull

The other computational geometry problem discussed iretttes calledquickhull- an algorithm
for finding the convex hull of a set of points. We will not disstit in class, but it is worth reading.

