
Computer Science 431
Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Divide and Conquer

Divide–and-Conqueris a very common and very powerful algorithm design technique. The gen-
eral idea:

1. Divide the complete instance of problem into two (sometimes more) subproblems that are
smaller instances of the original.

2. Solve the subproblems (recursively).

3. Combine the subproblem solutions into a solution to the complete (original) instance.

While the most common case is that the problem of sizen is divided into 2 subproblems of size
n
2
. But in general, we can divide the problem intob subproblems of sizen

b
, wherea of those

subproblems need to be solved.

This leads to a general recurrence for divide-and-conquer problems:

T (n) = aT (n/b) + f(n), wheref(n) ∈ Θ(nd), d ≥ 0.

When we encounter a recurrence of this form, we can use themaster theoremto determine the
efficiency class ofT :

T (n) =

Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

Application of this theorem will often allow us to do a quick analysis of many divide-and-conquer
algorithms without having to solve the recurrence in detail.

Mergesort
Each sorting procedure we have considered so far is an “in-place” sort. They require onlyΘ(1)
extra space for temporary storage.

Next, we consider a divide-and-conquer procedure that usesΘ(n) extra space in the form of a
second array.

CSC 431 Algorithms Spring 2013

It’s based on the idea that if you’re given two sorted arrays,you can merge them into a third inΘ(n)
time. Each comparison will lead to one more item being placedinto its final location, limiting the
number of comparisons ton− 1.

In the general case, however, this doesn’t do anything for our efforts to sort the original array. We
have completely unsorted data, not two sorted arrays to merge.

But we can create two arrays to merge if we split the array in half, sort each half independently,
and then merge them together (hence the need for the extraΘ(n) space).

If we keep doing this recursively, we can reduce the “sort half of the array” problem to the trivial
cases.

This approach, themerge sort, was invented by John von Neumann in 1945.

How many splits will it take?Θ(log n)

Then we will haveΘ(log n) merge steps, each of which involves sub-arrays totaling in size ton, so
each merge (which will bek independent merges inton

k
-element arrays) step hasΘ(n) operations.

This suggests an overall complexity ofΘ(n log n).

Let’s look at pseudocode for this:

mergesort(A[0..n-1])
if n>1

copy first half of array A into a temp array B
copy second half of array A into a temp array C
mergesort(B)
mergesort(C)
merge(B and C into A)

where the merge operation is:

merge(B[0..p-1], C[0..q.1], A[0..(p+q-1)])
while B and C have more elements

choose smaller of items at the start of B or C
remove the item from B or C
add it to the end of A

copy remaining items of B or C into A

Let’s do a bit more formal analysis of mergesort. To keep things simple, we will assume that
n = 2k.

Our basic operation will be the number of comparisons that need to be made.

The recurrence for the number of comparisons for a mergesortof a problem of sizen = 2k is

C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0.

2

CSC 431 Algorithms Spring 2013

The best, worst, and average cases depend on how long we are inthe main while loop in the merge
operation before one of the arrays is empty (as the remainingelements are then taken from the
other array with no comparions needed). Let’s consider the worst case, where the merge will take
n−1 comparisons (one array becomes empty only when the other hasa single element remaining).
This leads to the recurrence:

Cworst(n) = 2Cworst(n/2) + n− 1 for n > 1, Cworst(1) = 0.

The master theorem, gives is thatCworst(n) ∈ Θ(n log n).

Quicksort
Another very popular divide and conquer sorting algorithm is thequicksort. This was developed
by C. A. R. Hoare in 1962.

Unlike merge sort, quicksort is an in-place sort.

While merge sort divided the array in half at each step, sortedeach half, and then merged (where
all work is in the merge), quicksort works in the opposite order.

That is, quicksort splits the array (which takes lots of work) into parts consisting of the “smaller”
elements and of the “larger” elements, sorts each part, and then puts them back together (trivially).

It proceeds by picking apivot element, moving all elements to the correct side of the pivot, re-
sulting in the pivot being in its final location, and two subproblems remaining that can be solved
recursively.

A common and simple choice for the pivot is the leftmost element. We put it into its correct
position and put all elements on their correct side of the pivot.

Psuedocode for a quicksort:

quicksort(A[l..r]) // we would start with l=0, r=n-1
if l < r

s = partition(A[l..r]) // s is pivot’s location
quicksort(A[l..s-1])
quicksort(A[s+1..r])

partition(A[l..r])
p = A[l] // leftmost is pivot
i = l; j = r+1
do

do i++ until i = r || A[i] >= p
do j-- until j = l || A[j] <= p
swap(A[i],A[j])

until i>=j
swap(A[i],A[j]) // undo last

3

CSC 431 Algorithms Spring 2013

swap(A[l],A[j]) // swap in pivot
return j

Note: we always make a recursive call on a smaller array (but it’s easy to make a coding mistake
where it doesn’t, and then the sort never terminates).

The complexity of quicksort is harder to evaluate than mergesort because the pivot will not always
wind up in the middle of the array (in the worst case, the pivotis the largest or smallest element).

Again, the basic operation will be the comparisons that takeplace in the partition.

Thepartition method is clearlyΘ(n) because every comparison results inleft or right
moving toward the other and quit when they cross.

In the best case, the pivot element is always in the middle.

This would lead to a number of comparisons according to the recurrence:

Cbest(n) = 2Cbest(n/2) + n for n > 1, Cbest(1) = 0.

By solving the recurrence or applying the Master Theorem, we find thatCbest(n) ∈ Θ(n log n),
exactly like merge sort.

In the worst case the pivot is at one of the ends and quicksort behaves like a selection sort. This
occurs with already-sorted input or reverse-sorted input.To analyze this case, think of the first
pass through the fulln-element array. The first element,A[0], is chosen as the pivot. The left-
to-right inner loop will terminate after one comparison (sinceA[0] is the smallest element). The
right-to-left inner loop will perform comparisons withA[n-1], A[n-2], ... all the way down to
A[0] since we need to “move” the pivot item to its own position. That’s n+1 comparisons for the
partition step. In the process, the problem size is decreased by 1, so there will ben comparisons in
the next step,n−1 in the third, and so on. We stop after processing the two-element case (requiring
3 comparisons), so the total comparisons is given by:

Cworst(n) = (n+ 1) + n+ · · ·+ 3 =
(n+ 1)(n+ 2)

2
− 3 ∈ Θ(n2)

A careful analysis can show that quicksort isΘ(n log n) in the average case (under reasonable
assumptions on distribution of elements of array). We can proceed by assuming that the partition
can occur at any position with the same probability (1

n
). This leads to a more complex recurrence:

Cavg(n) =
1

n

n−1
∑

s=0

[(n+ 1) + Cavg(s) + Cavg(n− 1− s)] for n > 1, Cavg(0) = 0, Cavg(1) = 0.

We will not solve this in detail, but it works out to:

Cavg(n) ≈ 2n lnn ≈ 1.38n log2 n ∈ Θ(n log n).

4

CSC 431 Algorithms Spring 2013

Clearly, the efficiency of quicksort depends on the selectionof a good pivot. Improving our chances
to select a good pivot will ensure quicker progress. One way to do this is to consider three can-
didates (often the leftmost, rightmost, and middle elements) and take the median of these three as
the pivot value.

Other improvements include switching to a simpler (Θ(n2)) sort once the subproblems get below
a certain threshold size, and implementing quicksort iteratively rather than recursively.

Quicksort is often the method of choice for general purpose sorting with large data sizes.

Binary Trees
No discussion of divide and conquer can proceed without a discussion ofbinary treesand algo-
rithms on them.

We discussed the idea of tree data structures and introducedlots of tree-related terminology at the
start of the semester. For now, we will just consider a few examples.

We can make analysis convenient by defining a binary tree as either the empty set, or a tree node
plus two other binary trees: a left subtree and a right subtree.

To find the height of a tree:

height(T)
if (T is empty) return -1
else return max(height(T.left),height(T.right)) + 1

To analyze this, we first note that the size of the problem is the number of nodes in our treeT ,
denotedn(T).

The basic operation is either the comparison needed to find the max or the addition of 1 once we
find the max. A recurrence for either:

A(n(T)) = A(n(T.left)) + A(n(T.right)) + 1 for n(T) > 0, A(0) = 0

Note, however, that there are in fact more checks to see if thetree is empty than there are additions
or comparisons. That check happens at the base case only.

The number of additions/max comparisons:A(n) = n, while the number of checks for an empty
tree:C(n) = 2n+ 1.

The other key divide and conquer operations are the recursively defined tree traversals, which we
discussed earlier:

1. preorder: visit the root, then visit the left subtree, then visit the right subtree.

2. in-order visit the left subtree, then visit the root, then visit the right subtree.

5

CSC 431 Algorithms Spring 2013

3. postorder: visit the left subtree, then visit the right subtree, then visit the root.

Pseudocode is staightforward, for example:

inorder(T)
if (T is not empty)

inorder(T.left)
visit(T.root)
inorder(T.right)

Analysis is similar to that of height for this and for preorder and postorder. Each node is visited
once.

Strassen’s Matrix Multiplication
Our text describes a divide and conquer multiplication of large numbers, but since you likely saw
that in discrete math, we will move along to consider Strassen’s matrix-matrix multiplication.

This algorithm improves upon the standard matrix-matrix multiplication by observing that the
product of two2× 2 matrices can be performed using 7 multiplications instead of the usual 8.

This in itself does not seem that significant, especially when we consider that the standard algo-
rithm requires 4 additions, while Strassen’s algorithm requires 18 additions/subtractions.

The real benefit comes when we apply this idea to get a divide-and-conquer algorithm for multi-
plying matrices. To multiply 2n×n matrices, we break it into 4n

2
× n

2
matrices and use Strassen’s

algorithm to multiply them.

Our recurrence for the number of multiplications with this approach:

M(n) = 7M(n/2) for n > 1, M(1) = 1.

From which the Master Theorem (or a backward substitution) will yield:

M(n) ∈ Θ(nlog
2
7) ≈ n2.807.

Which is definitely a slower rate of growth thanΘ(n3).

An analysis of the (larger) number of additions/subtractions results in the same efficiency class:
A(n) ∈ Θ(nlog

2
7).

Many other approaches have been invented with even smaller rates of growth than Strassen’s algo-
rithm, but most have constant factors that make them impractical for real usage.

Computational Geometry

6

CSC 431 Algorithms Spring 2013

We return to two familiar problems from computational geometry to explore divide-and-conquer
solutions that are more efficient than the brute force approaches considered previously.

Closest Pairs

Our problem is to find among a set of points in the plane the two points that are closest together.

We begin by assuming that the points in the set are ordered by increasingx coordinate values. If
this is not the case, the points can certainly be sorted inO(n log n) time as a preprocessing step.

We then divide the points into two subsets,S1 andS2, each of which containsn
2

points (which is
easy since the points are sorted byx coordinate).

We then recursively find the closest pair of points in each subsetS1 andS2. If the distance between
the closest pair inS1 = d1 and the distance between the closest pair inS2 = d2. We then know
thatd = min{d1, d2} is an upper bound on the minimum distance between any pair, but we still
need to make sure we check for shorter distances where one point is inS1 and the other is inS2.

The only points which might be closer together than distanced are those within a strip of widthd
from the dividing line between the subsets. For each point within that strip and within one subset,
we potentially need to consider all points from within the strip within the other subset. That still
sounds like a lot of work. The key observation is that for eachpoint on one side, we have to
consider points whosey coordinates are withind. This will mean at most 6 points from the other
side, since if there are more points than that withind in they coordinate on the other side, at least
one pair from among that point would be closer than distanced to each other.

So how do we find those points to check? They can be found quickly if we also keep the points
sorted in order byy coordinate. Still, this seems difficult but it can be done efficiently (see the
text’s description for details).

We end up with a recurrence:

T (n) = 2T (n/2) +O(n)

which given an overall time ofT (n) ∈ O(n log n).

Quickhull

The other computational geometry problem discussed in the text is calledquickhull– an algorithm
for finding the convex hull of a set of points. We will not discuss it in class, but it is worth reading.

7

