
Computer Science 431
Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Decrease and Conquer

Our next class of algorithms are thedecrease-and-conquer group.

The idea here:

1. Reduce the problem to a smaller instance

2. Solve the smaller instance

3. Modify the smaller instance solution to be a solution to the original

The main variations:

• Decrease by a constant (often by 1)

• Decrease by a constant factor (often by half)

• Variable size decrease

For example, consider variations on how to compute the valuean.

The brute-force approach would involve applying the definition and multiplyinga by itself, n
times.

A decrease-by-one approach would reduce the problem to computing the result for the problem of
sizen − 1 (computingan−1) then modifying that to be a solution to the original (by multiplying
that result bya).

A decrease-by-constant-factor (2, in this case) approach would involve computinga
n

2 and multi-
plying that result by itself to compute the answer. The only complication here is that we have to
treat odd exponents specially, leading to a rule:

a
n =















(a
n

2 )
2

if n is even

(a
n−1

2 )
2

· a if n > 1 and odd
a if n = 1

This approach will lead toO(log n) multiplications.



CSC 431 Algorithms Spring 2013

Insertion Sort
Our decrease-by-one approach to sorting is theinsertion sort.

The insertion sort sorts an array ofn elements by first sorting the firstn−1 elements, then inserting
the last element into its correct position in the array.

insertion_sort(A[0..n-1]) {
for (i=0 to n-1) {

v = A[i]
j = i-1
while (j >= 0 and A[j] > v) {
A[j+1] = A[j]
j--

}
A[j+1] = v

This is an in-place sort and is stable.

Our basic operation for this algorithm is the comparison of keys in the while loop.

We do have differences in worst, average, and best case behavior. In the worst case, the while loop
always executes as many times as possible. This occurs when each element needs to go all the way
at the start of the sorted portion of the array – exactly when the starting array is in reverse sorted
order.

The worst case number of comparisons:

Cworst(n) =
n−1
∑

i=1

i−1
∑

j=0

1 =
n−1
∑

i=1

i =
n(n− 1)

2
∈ Θ(n2)

In the best case, the inner loop needs to do just one comparison, determining that the element is
already in its correct position. This happens when the algorithm is presented with already-sorted
input. Here, the number of comparisons:

Cbest(n) =
n−1
∑

i=1

1 = n− 1 ∈ Θ(n)

This behavior is unusual – after all, how often do we attempt to sort an already-sorted array?
However, we come close in some very important cases. If we have nearly-sorted data, we have
nearly this same performance.

A careful analysis of the average case would result in:

Cavg(n) ≈
n2

4
∈ Θ(n2)

2



CSC 431 Algorithms Spring 2013

Of the simple sorting algorithms (bubble, selection, insertion), insertion sort is considered the best
option in general.

Topological Sort
Our next algorithm operates on a special class of graph structures:directed acyclic graphs, ordags.

Dags naturally arise in many problems, but we will assume that we are given a dag and wish to
perform atopological sort of the graph vertices. A toplogical sort of a dag is an ordering of the
vertices such that for every edge in the dag, the starting vertex of the edge is listed before the
ending vertex.

Note that it makes no sense to attempt a topological sort if the graph is either undirected or if it has
a cycle.

One example of a dag might be a course prerequisite graph.

One algorithm to compute a topological sort of a dag is based on a depth-first traversal of the graph
is described in the text.

We will look at a second option (also in the text) called thesource removal algorithm.

The algorithm proceeds as follows:

source_removal(Graph G=(V,E))
o = new List
while (G contains a source vertex v)

o.append(v)
G.remove(v) -- and all incident edges

if (G is empty)
return o

else
return error (G was not a dag)

Generating Combinatorial Objects
One of the things we saw in the “brute force” algorithm discussion was that we sometimes need to
enumerate all possible solutions for a given problem.

Permutations

You already implemented one mechanism for generating all permutations of a list of items for a
problem set.

The text describes two additional methods for enumerating permutations that we will not discuss
in class. It is worth reading about them.

3



CSC 431 Algorithms Spring 2013

Subsets

We saw the need to generate all possible subsets (i.e., a power set) when discussing the knapsack
problem.

The text describes four approaches.

For the first, we will use a direct descrease and conquer approach. We will consider each element
in the set, and generate all of the sets that do not have that element. Then, the subsets are exactly
those plus the same group of subsets but with this element added in. See the table in Figure 4.10
for an example.

A quite clever method involves using an integer value, treating its bottomn bits as Boolean values
indicating whether one of the elements is in the power set or not. The advantage of this is that the
loop to visit all subsets becomes afor loop, counting from 0 to2n − 1. And inside the loop, we
just find the “1” bits and treat the corresponding elements asbeing in the set, or not, as appropriate.
This generates a “lexicographic order”.

Another alternative is to generate the “squashed order”, where we first generate the empty set, then
the singletons in order, then the two-element subsets, etc.This one is left as an exercise.

Finally, there is the Gray code ordering, where each subset in the sequence differs from the next
by the addition or removal of a single element.

See the algorithm on p. 148.

Decrease-by-a-constant-factor

Binary Search

We next briefly recall the idea of abinary search – the efficient procedure for searching for an item
in a sorted array.

A binary search is often treated as an example of a divide and conquer algorithm – our next major
group of algorithms, but Levitin treats it as an example of adecrease-by-a-constant-factor algo-
rithm.

Here is a nonrecursive algorithm that implements binary search:

bin_search(A[0..n-1], K)
l=0; r=n-1
while (l <= r)

m = floor((l+r)/2)
if (K == A[m]) return m
else if (K < A[m]) r=m-1
else l=m+1

return -1

4



CSC 431 Algorithms Spring 2013

To find an item, we look for it in the middle. If we do not find it, we look only to the left (if the
target is smaller than the middle element) or to the right (ifthe target is larger than the middle
element).

We will not look in detail at the recurrence or its solution, just note that this is a very fast algorithm:
requiringΘ(log n) comparisons in the worst case.

Fake Coin Problem

The text discusses a version of the “fake coin problem” wherewe are given a set ofn coins, one
of which is a fake. We know it is a fake because it is lighter than the legitimate coins. To solve
the problem we are able to use a balance scale, and on each sideof the scale we can put 1 or more
coins to compare the weights.

Discussion:

• a naive approach: weigh pairs of coins until we find the one that’s lighter than the others

• a reduce-by-constant-factor approach where we weigh equalnumbers of coins (half at a
time), narrowing down which half contains the fake until we find it

• a reduce-by-constant-factor approach where we weigh 3 piles of coins at a time, narrowing
down which third contains the fake until we find it

• does it make sense to divide into more than 3 piles?

The text has a few additonal examples that we may encounter later.

5


