Computer Science 431

Algorithms
The College of Saint Rose
Spring 2013

Topic Notes: Binary Search Trees

Possibly the most common usage of a binary tree is to stoeefaiatjuick retrieval.

Definition: A binary tree is dinary search tree (BST) iff it is empty or if the value of every node
is both greater than or equal to every value in its left sib#med less than or equal to every value
in its right subtree.

Note that a BST is an ordered structure. That is, it maintainsfats elements in order. This
restriction allows us to build more efficient implementasof the most important operations on
the tree.

We will refer to the implementation of binary search treegha structure package, the same
package we have been using for graph implementations.

Any interesting operation in a BSGét , add, r enove) has to begin with a search for the correct
place in the tree to do the operation. Our implementatioralfasper method used by all of these
to do just that. We want to find th&i nar yTr ee whose root either contains the value, or, if the
value is not to be found, the node whose non-existent childldvoontain the value.

This is just a binary search, and is performed in the proteetethod ocat e.

Next, let’s consdier thedd method. We will be creating a nefi nar yTr ee with the given
value, and setting parent and child links in the tree to pthsenew value appropriately.

We need to consider several cases:
1. We are adding to an empty binary tree, in which case we jakerthe new node the root of
the BST.

2. We add the new value as a new leaf at the appropriate plaite itree as the child of a
current leaf. For example, add 5.5 to this tree:

CSC 431 Algorithms Spring 2013

to get

3. If the value is one that is already in the tree, the search st@p early, in which case we
need to add the new item as a child of the predecessor of theefoadd.

For example, adding 9 to the tree above:

We can choose to add duplicate values as either left or rigiltren as long as we’re con-
sistent. Our implementation chooses to put them at the left.

Our add implementation used a helper methpdedecessor. We have this, plus a helper
method to find thesuccessor.

These are pretty straightforward. Our predecessor isginmiost entry in our left subtree, and the
successor is the leftmost entry in the right subtree.

Theget method is very simple. It's justbocat e, followed by a check to make sure the value
was found at the location.

r enove is more interesting.

Again, there are a number of possibilities:

1. We are removing a leaf, which is very straightforward.

2

CSC 431 Algorithms Spring 2013

2. We are removing the root of the entire tree, in which case&ezl to change the root of the
BST.

3. We are removing an internal node, in which case we need tgantke children into a single
subtree to replace the removed internal node.

4. The item is not found, so the tree is unmodified and we retuin .

The implementation separates out three important cas@sovieg the root, removing a node

which is a left subtree, or removing a node which is a rightisé In each case, we replace the
removed node with a tree equivalent to its two subtrees, eterggether. This is accomplished
through the enoveTop method.

This method is also broken into a number of cases:

1. Easy cases: If either child of top is empty, just use therothild as the new top. Done.

2. Another easy case: top’s left child has no right child. é{gust assign top’s right to be the
right child of left child and call the left child the new top.

3. The more complex case remains: left child has a right child

Here, we will proceed by locating the predecessor of the tmenmake that the new top,
and rearrange the subtrees in the only way that retains tlex of the entire tree.

What about complexity of these operations?

add, get, cont ai ns, andr enove are all proportional to the height of the tree. So if the tee |
well-balanced, these af&(logn), but all are©(n) in the worst case.

Tree Sort

One of many ways we can use a BST is for sorting.

We can build a BST containing our data and then do an inordegrisal to retrieve them in sorted
order. Since the cost of entering an element into a (balgrmedry tree of sizeu is log n, the cost
of building the tree is

(log1) + (log2) + (log3) + - - - + (logn) = ©(nlogn) compares.
The inorder traversal i®(n). The total cost i9(n log n) in both the best and average cases.

The worst case occurs if the input data is in order. In thie cag’re essentially doing an insertion
sort, creating a tree with one long branch. This results ire@s$earch as bad &gn?).

Balanced Trees

CSC 431 Algorithms Spring 2013

O—
O

Just having the same height on each child of the root is naigmto maintain & (logn) height
for a binary tree.

We can define &alance condition, some set of rules about how the subtrees of a node can differ.

Maintaining a perfectly strict balance (minimum heighttioe given number of nodes) is often too
expensive. Maintaining too loose a balance can destrog@the; n) behaviors that often motivate
the use of tree structures in the first place.

For a strict balance, we could require that all levels extsptowest are full.

How could we achieve this? Let’s think about it by insertihg values 1,2,3,4,5,6,7 into a BST
and seeing how we could maintain strict balance.

First, insert 1:

Next, insert 2:

We're OK there. But when we insert 3:

we have violated our strict balance condition. Only one tugl these three values satisies the
condition:

CSC 431 Algorithms Spring 2013

[\

We will see how to “rotate” the tree to achieve this shortly.

Now, add 4:

[\

Again, we need to fix the balance condition. Here, we can appyof these rotations on the right
subtree of the root:

[\

/\

Now, add 6:

[\

/\

CSC 431 Algorithms Spring 2013

It's not completely obvious how to fix this one up, and we wamdrry about it just now. We do
know that after we insert the 7, there’s only one permisdiae:

4
[\
2 6
[\ [\
1 35 7

So maintaining strict balance can be very expensive. Tleeddgustments can be more expensive
than the benefits.

There are several options to deal with potentially unbaddnitees without requiring a perfect
balance.

1. Red-black trees — nodes are colored red or black, and place restrictons on wdtenodes
and black nodes can cluster.

2. AVL Trees - Adelson-Velskii and Landis developed these in 1962. Weélaak at these.

3. Splay trees— every reference to a node causes that node to be relocatedrtmot of the tree.
This is very unusual! We havecant ai ns() operation that actually modifies the structure.

This works very well in cases where the same value or a smalipgof values are likely to
be accessed repeatedly.

We may talk more later about splay trees as well.

4. 2-3 Trees— tree nodes can hold more than one key — described in the text.

AVL Trees

We considerAVL Trees, developed by and named for Adelson-Velskii and Landis, wiwented
them in 1962.

Balance condition: the heights of the left and right subtadesy node can differ by at most 1.

To see that this is less strict than perfect balance, letisider two trees:

CSC 431 Algorithms Spring 2013

This one satisfies the AVL condition (to decide this, we chiiekheights at each node), but is not
perfectly balanced since we could store these 7 values geafrheight 2.

But...

This one does not satisfy the AVL condition — the root noddates it!

So the goal is to maintain the AVL balance condition each tineee is an insertion (we will ignore
deletions, but similar techniques apply).

When inserting into the tree, a node in the tree can becomdataiof the AVL condition. Four
cases can arise which characterize how the condition cafne vlated. Let’s call the violating
nodeA.

1. Insertion into the left subtree of the left child af

2. Insertion into the right subtree of the left child &f

3. Insertion into the left subtree of the right child 4f

4. Insertion into the right subtree of the right child 4f
In reality, however, there are only two really differentesssince cases 1 and 4 and cases 2 and 3
are mirror images of each other and similar techniques apply
First, we consider a violation of case 1.

We start with a tree that satisfies AVL:

level n-1

level n

CSC 431 Algorithms Spring 2013

After an insert, the subtre¥ increases in height by 1:

level n-1

level n

level n+1

So now nodé, violates the balance condition.
We want to perform aingle rotation to obtain an equivalent tree that satisfies AVL.

Essentially, we want to switch the roles/gfandk,, resulting in this tree:

(=2
AN

For this insertion type (left subtree of a left child — casgthiis rotation has restored balance.

level n

We can think of this like you have a handle for the subtree atrdlot and gravity determines the
tree.

If we switch the handle fronk, to £; and let things fall where they want (in fact, must), we have
rebalanced.

Consider insertion of 3,2,1,4,5,6,7 into an originally eynjpée.

Insert 3:

CSC 431 Algorithms Spring 2013

Insert 2:

Insert 1:

Here, we had to do a rotation. We essentially replaced theafoihe violating subtree with the
root of the taller of its children.

Now, we insert 4:

[\

Then insert 5:

2
/\
1 3 <-- AVL violated here (case 4)
\
4
\
5

and we have to rotate at 3:

[\

/\

CSC 431 Algorithms Spring 2013

Now insert 6:

2 <-- AVL violated here (case 4)
/\

/\

Here, our rotation moves 4 to the root and everything eldg ifato place:

4
[\
2 5
[\ \
1 3 6

Finally, we insert 7:

4
/[\

2 5 <-- AVL violated here (case 4 again)

/\ /\
1 35 7

We achieve perfect balance in this case, but this is not gtegd in general.

This example demonstrates the application of cases 1 and Apbcases 2 and 3.
Here’s case 2:

We start again with the good tree:

10

CSC 431 Algorithms Spring 2013

level n-1
level n
But now, our inserted item ends up in subtiée
level n-1
level n
level n+1
We can attempt a single rotation:
level n—-1 A
level n

level n+1

This didn’t get us anywhere. We need to be able to break up

We know subtre@” is not empty, so let’s draw our tree as follows:

11

CSC 431 Algorithms Spring 2013

level n B C

level n-1

level n+1

Here, only one of3 or C'is at leveln + 1, since it was a single insert beldw that resulted in the
AVL condition being violated aks with respect to its shorter child.

We are guaranteed to correct it by movibigdown a level and boti® andC' up a level:

ANYANANA

We're essentially rearranging, &, andk; to havek, at the root, and dropping in the subtrees in
the only locations where they can fit.

level n

In reality, only one ofB and(C' is at leveln — the other only descends to level- 1.
Case 3 is the mirror image of this.

To see examples of this, let’'s pick up the previous examplechvhad constructed a perfectly-
balanced tree of the values 1-7.

[\ /\

At this point, we insert a 16, then a 15 to get:

12

CSC 431 Algorithms Spring 2013

/ \

/\ /\
1 35 7
\

16
/
15

Node 7 violates AVL and this happened because of an inserthetleft subtree of its right child.
Case 3.

So we letk; be 7,k, be 15, and:; be 16 and rearrange them to hayeat the root of the subtree,
with childrenk, andks. Here, the subtreed, B, C, andD are all empty.

We get:
4
/ \
2 6
[\ [\
1 35 15
[\
7 16

Now insert 14.

This violates AVL at node 6 (one child of height 0, one of h¢igh

This is again an instance of case 3: insertion into the Iddtree of the right child of the violating
node.

So we letk; be 6,k, be 7, andk; be 15 and rearrange them again. This time, subtfeissthe 5,
B is empty,C' is the 14, and is the 16.

13

CSC 431 Algorithms Spring 2013

The double rotation requires that 7 become the root of thatree, the 6 and the 15 its children,
and the other subtrees fall into place:

What do we have here? Looking up from the insert location, tts¢ élement that violates the
balance condition is the root, which has a difference of tetwieen its left and right child heights.

Since this is an insert into the right subtree of the rightdchive're dealing with case 4. This
requires just a single rotation, but one done all the wayeatdot. We get:

7
/ \
4 15
/ \ I\
2 6 14 16
[\ I

14

CSC 431
2 6
/\ /
1 3 5
/
12

1 3 5

Inserting 11:

1 3 5

Algorithms

7
\
15
[\
13 16
[\
12 14
7
\

15
[\
13 16
[\
12 14

Spring 2013

Here, we have a violation at 15, case 1, so another singlgawotidere, promoting 13:

(Almost done)

Insert 10:

15

CSC 431 Algorithms

7
/ \
4 13
/ \ [\
2 6 12 15
[\ I I\

The violator here is 12, case 1:

7
/ \
4 13
/ \ / \
2 6 11 15
[\ [\ [\

1 3 5 10 12 14 16

Then we finally add 8 (no rotations needed) then 9:

7
/ \
4 13
/ \ / \

2 6 11 15
/\ [\ [\
1 3 5 10 12 14 16
/

8
\
9

Spring 2013

Finally we see case 2 and do a double rotation with 8, 9, and @8ttour final tree:

7
/ \
4 13
/ \ / \
2 6 11 15
[\ [1\ [\
1 3 5 9 12 14 16
/\
8 10

16

CSC 431 Algorithms Spring 2013

This tree is not strictly balanced — we have a hole under gl ichild, but it does satisfy AVL.

You can think about how we might implement an AVL tree, but wi# mot consider an actual
implementation. However, AVL insert operations make eetcelexam questions, so keep that in
mind when preparing for the final.

The whole point of considering AVL trees is to maintain a meeble balance, and hopefully, a
tree height that looks likebg n. We will not do a detailed analysis, but the heighif an AVL tree
is guaranteed to satisfy the inequality:

[logyn] < h < 1.44.05logy(n + 2) — 1.3277.

We have log factors on both sides, leading=tiog n) worst case behavior of search and insert
operations.

17

