
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: Scientific Computing

Adaptivity and Linked Structures
So far, we have looked at distributed data structures that use only arrays. Arrays usually are the
easiest to distribute; we simply assign a range of subscripts to each process. Quinn spends a lot of
time discussing local vs. global indexing.

In your Jacobi solver, solution points were distributed evenly through the domain:

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

If you wanted a more accurate solution, you could add more solution points. But since your pro-
gram used a uniform distribution of the points, better accuracy requires adding points everywhere.

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
.

While this is possible, it increases the total amount of work very quickly.

In some cases, we really only need more points in just parts ofthe domain. In a heat distribution
problem, if there is a heat source in the northwest corner, wemay only need more accuracy near
that heat source. Fewer points may provide a sufficiently accurate solution further from the source.

CSIS 400 Parallel Processing Fall 2008

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| . . . |
.

This is significantly more efficient in terms of the amount of computation we need to do to obtain
a solution of acceptable accuracy.

If we know ahead of time where the extra work is needed, we could assign extra points there
at the start of the computation. However, we often do not knowthis information. After all, we
probably wouldn’t be solving problems for which we already have a solution handy, so anadaptive
approach is taken. Periodically, the accuracy of the solution can be checked, and extra points added
as needed. In the context of the Jacobi solver, we may have a threshold for the greatest allowable
difference in temperature between adjacent points. If the difference exceeds the threshold, points
are added in that vicinity and the solution is recomputed.

Adaptivity with arrays is difficult, as the completely regular structure is lost. In many cases, amesh
structure, often implemented as a linked data structure, isused instead of arrays.

Meshes come in a variety of types. Meshes consisting of quadrilaterals (hexahedra in three di-
mensions) are calledstructured meshes. Meshes constructed from triangles (tetrahedra in three
dimensions) are calledunstructured meshes. There are big differences in terms of what happens
mathematically when you use them to solve a problem and how hard they are to generate, but for
our purposes here, the issues are similar.

Some terminology: a typical mesh consists of three-dimensional regions or volumes, and their
boundingfaces, edges, andvertices. A data structure implementing the mesh will often allow
queries such as “what faces bound this region” and “what edges are incident on this vertex” to be
made efficiently.

The term “element” often is used to refer to the highest-dimension entity, and in many cases is the
entity with which the solution is stored.

In fact, our Jacobi example is really just a computation on a uniform quadrilateral structured mesh.
Here, the squares serve as the mesh elements and these contain the solution values.

2

CSIS 400 Parallel Processing Fall 2008

A (hypothetical) adaptive refinement of such a mesh might look like:

Here is a simple unstructured mesh:

The use of adaptivity (and some other considerations) necessitate linked data structures for the
mesh. Here is the triangular mesh after a hypothetical refinement operation:

3

CSIS 400 Parallel Processing Fall 2008

Such mesh structures may be stored in memory as arrays of entities or with a full topological hier-
archy. We will soon consider an implementation of an adaptive structured mesh using aquadtree
data structure.

These sample unstructured meshes are stored in memory usinga hierarchical linked structure.
These structures are implemented in a software library called theSCOREC Mesh Database (MDB).
We could write programs to operate entirely on these meshes (and many have been written) but it
is not yet parallel.

A second library, theParallel Mesh Database (PMDB) is built on top of MDB and provides for
distributed meshes.

We would like our distributed meshes to provide all the functionality and flexibility that is provided
by the regular MDB. See the description and figures in theApplied Numerical Mathematics article.
PMDB takes care of all of the message passing to migrate the mesh entities as appropriate and to
update all of the partition boundary structures.

A variety of algorithms can be used to determine just how to distribute mesh elements among a set
of cooperating processes and several of thesemesh partitioning algorithms will be topics of study
for us very soon.

Adaptive mesh refinement of PMDB meshes is provided by the (very scary) refdref library.

• Refinement of tetrahedra:

1-edge

2-edge

3-edge

4-edge

5-edge

6-edge

x 2

x 4 x 8

x 4 x 16

x 4

4

CSIS 400 Parallel Processing Fall 2008

• Coarsening of tetrahedra:

MT1
0

MT
0
2

m : m - m’
m = nbr of tets
connected to
m’ = nbr of tets
connected to

MT1
0

TM
1

TM
1
1

1

We can see some of this in action with some solution animations.

Computation on Quadtrees
We will consider a relatively simple example of an adaptive computation. We return to our Jacobi
Iteration heat solver.

We could approach this problem using an unstructured mesh asdescribed above, but that can get
complicated very quickly, even more so than the approach we will take. Instead, we will use a C
program to solve Laplace’s equation on a square domain usingJacobi iteration that operates on
an adaptivequadtree structure. We will see how to parallelize this adaptive Jacobi solver, using
the SPMD model with MPI for message passing and finally, how toimplement a redistribution
procedure to rebalance the load after imbalance is introduced by adaptivity.

Quadtrees

A quadtree is a spatial tree data structure. Each node in the tree is called aquadrant. Leaf nodes
are calledterminal quadrants. These terminal quadrants will serve as the elements on which we
will perform computation.

The tree’s root represents the entire domain, which, in our case, is a square.

The four children of the root each represent one quarter of the space taken by the root.

5

CSIS 400 Parallel Processing Fall 2008

These children can then be divided in four, continuing down as many levels as desired. Different
parts of the domain may be refined to different levels.

Computing Sequentially on a Quadtree

The Jacobi iteration on a given quadtree is similar to the iteration you’ve done in the array-based
versions. However, since there may be a deeper quadtree in some parts of the domain, some leaf
quadrants have neighbors more or less refined than themselves.

E

In the above figure, the element “E” should compute its value based on the values of the shaded
neighbor quadrants. Note that E’s north neighbor is actually refined one level further, so it has
two immediate north neighbors. Ideally, the north neighborvalue should be the average of the two
immediate quadrant neighbors, but it is sufficient to use thevalue at the shaded quadrant (which is
the average of the four leaf quadrants).

One obstacle to overcome is to locate neighboring quadrantsefficiently. It is possible to maintain
direct neighbor links within your quadtree structure, but you may find it more useful to search based

6

CSIS 400 Parallel Processing Fall 2008

on coordinate information. Each quadrant knows its own bounding box coordinates and from this
can easily compute the coordinates of the adjacent quadrants at the same level. A nice feature of the
quadtree structure is that the quadrants that contain any point in space can easily be found with a
simple traversal from the root, determining the correct child at each step by comparing coordinates.
If the neighbor point is outside the root quadrant, you know to apply a boundary condition.

Sequential Program Requirements

To make the program more interesting in the context of adaptivity, our program will allow a wider
range of initial and boundary conditions than your previousimplementations.

• Initial conditions are be specified by a C function that provides values given (x,y) coordinates
of a point in the domain. Each leaf quadrant’s solution valueis initialized to the value
obtained by passing the quadrant’s centroid to this function.

• Boundary conditions are also specified through C functions. The left and right boundaries
take the y coordinate as a parameter and the top and bottom boundaries take the x coordinate
as a parameter, allowing boundary conditions to be functions in addition to simple constants.
When a quadrant needs to query a boundary condition when computing its value, it should
call the appropriate function.

• Special “internal boundary conditions” are specified by onemore C function. The function
takes a leaf quadrant and sets its value if the quadrant contains any points that have internal
boundary values. For example, if there is a point heat sourceat (0.25,0.25) keeping the
immediate area at a constant temperature of 2, this functionwill set the solution value of any
quadrant containing (0.25,0.25) to 2. This function shouldbe called on each leaf quadrant
during each Jacobi iteration step. If the function sets the quadrant’s solution value, that value
should be used instead of the solution computed based on its neighbors.

These functions can be hard-coded into our program, but we could implement a system where
initial and boundary conditions can be specified through a configuration file if time permits.

The program will take several parameters:

1. an initial global refinement level, which in turn determines the initial number of leaf quad-
rants

2. a Jacobi iteration tolerance, similar to the tolerance from the previous implementations

3. a limit on the number of Jacobi iteration steps

4. a refinement threshold, specifying the maximum difference in temperature allowed between
adjacent leaf quadrants

5. a limit on the total number of refinement steps

7

CSIS 400 Parallel Processing Fall 2008

Here is the result of the program when run on the unit square with thex = 0 boundary condition
set to2y, the other side boundaries fixed at 0, and a special boundary condition setting the point at
(0.75,0.75) to 3. The entire domain is initialized to 0. The initial quadtree is refined 3 levels (64
leaf quadrants), a Jacobi tolerance of 0.0001 with a maximumnumber of iterations of 2000, and a
refinement threshold of 0.05 and a maximum number of refinement levels of 3.

Sequential Program Design and Implemenation

The structure of the program should look something like this:

create quadtree to initial refinement level
set initial solution values of leaf quadrants to initial conditions
do {
do {

foreach leaf quadrant {
if (!special boundary condition applied)

do Jacobi iteration step
}

} while (error > Jacobi tolerance && jac_steps < jac_max)
refine quadrants based on refinement threshold

} while (any quadrants were refined && ref_steps < ref_max)

Even though our program is written in C instead of an object-oriented language like C++ or Java,
we will follow good object-oriented design. One way to do this is to separate the data structures
and functionality of the quadtree from the solution process.

We’ll start by looking at the main program, then look at quadtree-related structures and functions
as we encouter them.

Some things to notice at this point:

8

CSIS 400 Parallel Processing Fall 2008

• The list of local variables inmain is very short - just the pointer to the root of our quadtree
and several solution parameters and miscellaneous variables like loop indices and file point-
ers.

• The program requires 6 command-line arguments. In additionto the solution parameters
mentioned above, we have an “output level” that we can use to specify how frequently our
program will print solution data.

• We create the initial quadtree structure: the parameters are the bounding box (top, left,
bottom, right), the initial solution value, and the parent point (NULL for the root).

• Next, we have to do our initial global refinement.

– We do this with avisitor function that will in turn call acallback function with each
leaf quadrant as a parameter.

– The functionvisit all leaf quadrants is, as you might suspect, a recursive
function. It takes as parameters the quadrant whose leaves are to be visited, a pointer
to the function to call on each leaf, and a pointer to some caller-specified data that will
also be passed along to the callback function. The function’s two options are:

∗ if we are already at a leaf, call the callback function

∗ if we are an interior quadrant, make a recursive call to the visitor function on each
child quadrant.

– In this case, we use a callback functiondo refine, which performs one level of
refinement on each leaf quadrant.

– Ourdo refine function just calls a quadtree functionrefine leaf quadrant.

– Therefine leaf quadrant function:

∗ Checks to make sure the quadrant is in fact a leaf. Note the use of the function
is leaf quadrant to check and the use of the macroASSERT to terminate
our program with an error condition if this is not a leaf.

∗ Creates 4 new leaf quadrants, each1

4
the size of the original leaf, and with the

former leaf as their parent.

– This happens as many times as we specified for the initial refinement level (init ref),
and results in a uniform quadtree with4

init ref leaves.

• Next, we need to set our initial conditions based on the function provided.

– We again use our leaf quadrant visitor (leaves as the only quadrants that have a solution
value in our implementation) this time withset init cond as the callback function.

– Theset init cond function calls our initial condition functioninitial cond,
with the coordinates of the centroid of the leaf to get the appropriate initial condition
value for this leaf, then callsquadrant set value to assign it to the leaf.

• For the moment, we’ll ignore the solution printing and look at the solution process.

9

CSIS 400 Parallel Processing Fall 2008

– Our main loop is a nesteddo/while. The outer loop guides solutions on different
refinements of the tree. The inner loop is the Jacobi iteration corresponding to what we
had done previously. We’ll consider that loop to start.

– The solution step is done with another visitor/callback.

∗ Like you did in your implementations earlier, we always do two iterations in suc-
cession: one to compute a second solution from the current, then another to com-
pute current again based on the second.
The callbackdo jacobi iter phase1 computes what we callprevious
fromvalue, anddo jacobi iter phase1 computesvalue fromprevious.

∗ Each of these follows the same general procedure:

· Check to see if there is a special boundary condition that applies to this leaf.
This is done with theapply other bc function. If a condition was applied,
the function returns true and we’re done with this leaf.

· Otherwise, we need to find our 4 neighbor values that we’ll be averaging to
get our new value. This is not as simple as changing array indicies by one like
we did when the computation was being done on a simple 2D array.

· Neighbor-finding in a quadtree involves a simple search. In our quadtree code,
it is done with the functionneighbor quadrant, which takes any quad-
rant and a direction and returns either a neighboring quadrant in the desired
direction, orNULL if there is no neighbor (i.e., we are on a boundary).
It is not even always clear what we mean by the “north neighbor” There is
potentially a whole hierarchy of quadrants neighboring us in a given direction.
What we need for our solution is the neighborat our own level in the tree
hierarchy. If our neighbor is not refined as far as us, we’ll goahead and use
the leaf at a higher level. If it is refined more, we want to use the leaf quadrants
adjacent to us, but only count them once, even if more than oneis adjacent.
We find the appropriate neighbor by finding a point in space that we know will
be inside our neighbor in a given direction, then searching for that point in the
tree.
Something to think about: we could start this search at the root and work
down, but can we do better by searching up the tree to find our nearest ancestor
that contains the desired point, then back down to the appropriate leaf? This
is faster when our neighbors are most likely our siblings or cousins. Only
in those cases where our neighbor is in a different level 1 quadrant will we
need to search all the way back to the root. This is the search we use in the
neighbor quadrant function.

· Any neighbor search that returnsNULL indicates that we’ve gone off the edge
of the universe and should use a boundary condition instead.We do this with
thebc * functions.

· With the 4 neighbor or boundary values to average ready, we compute the new
value and store it in the quadrant.

· In the phase 2 computation, we also check the error value, where the maximum
encountered so far being passed in asmaxerr. Note that this uses the extra

10

CSIS 400 Parallel Processing Fall 2008

callback parameter to pass the pointer tomain’s local variablemax jac diff
to the callbacks. At the end, we’ll have the maximum error available in
max jac diff.

– After the 2 iterations, we check to see if we’ve reached our error tolerance or the max-
imum number of iterations.

We’ve ignored an important part here so far. The adaptivity.That’s the outer loop.

• Recall that we want to find places where adjacent quadrants have solution values whose
difference exceeds a given tolerance. When we find such situations, we want to refine the
tree in that area to have a more accurate solution. That’s what happening in the outer loop.

• The functioncalc error and refine is the heart of the refinement functionality. It
determines where refinement is needed, performs that refinement, then returns the number
of refinements that were performed. (If there are 0, we can stop processing, since we’d only
recompute the same solution we just computed on the previousgrid.)

• The implementation ofcalc error and refine again makes good use of our visitor
function in each phase of our refinement procedure:

– Marking quadrants for refinement: thecheck if refinement needed function.
We locate each of our neighbors, then see if any of them have solution values too far
from our own. If one is found, we mark ourself for refinement.

Marking for refinement involves a little trick in the quadtree data structure. Since we
don’t have children when we’re a leaf, we use a non-zero valuein the third child pointer
to indicate the refinement mark.

– Refining marked quadrants: therefine if marked function. If the leaf being vis-
ited is marked for refinement, we refine it. Notice that the newquadrants inherit the
solution value from their parent. This means we use the last solution on one grid as the
initial solution on the next.

Finally, a bit about printing the solution. As you learned even in the non-adaptive versions you
wrote, it is nearly impossible to understand the solution based only on printing out values from
the grid. This problem becomes even more difficuly once we include adaptivity. Our approach is
to print solutions to a file in a format that includes the coordinates of each leaf quadrant and its
solution value. These values may then be plotted with gnuplot. A script that I used to generate
some of the solution plots in these notes is available assolutionplot.gp. This is a very
simple gnuplot script and I am sure you can do better, but it gets the job done.

Parallelization

Our ultimate goal is to parallelize this program.

There are many choices to make when parallelizing a program such as this. Which parts of the
computation are to be performed by each processor? What is thegranularity of the units of work to

11

CSIS 400 Parallel Processing Fall 2008

be divided among the processors? What information must be maintained and what communication
is needed to support the computation once the work has been divided? Will the workloads need to
be adjusted following adaptive steps? How can such a rebalancing be performed?

We will consider parallelization using the following phased development process:

Phase 1Build the initial quadtree to the requested refinement level,but replicate it completely on
each process. Assign a unique owner process to each leaf quadrant, essentially partitioning
the quadtree. Each quadrant’s solution is computed only by its owner, but quadrants along
partition boundaries will need to exchange solution valuesbetween iterations. There are
many possible approaches to this partitioning problem, butit should be fairly straightforward
if you divide the quadrants into partitions based on a tree traversal. If you haven leaf
quadrants andp processes, assign the firstn

p
to the first partition (process 0), the nextn

p
to

the next partition (process 1), and so on, handling remainder quadrants in some reasonable
way. If child quadrants are ordered NW-NE-SW-SE, a partitioning of a base quadtree refined
to three levels might be done as follows:

For this phase, we need to implement the message passing needed to send solution infor-
mation from owned quadrants on partition boundaries to those other processes (and only to
those other processes) that will need the information during the solution process. Note that
we are ignoring adaptivity for this phase, so the working program should compute only on
the initial quadtree. Solution output procedures are needed to compare the solution from the
parallel version with those from the sequential version.

Phase 2Now, to reintroduce adaptivity. Adaptivity will work much as it did in the sequential
program, except that when a quadrant is refined, it need only be refined on the owner process.
This means that the quadtree, which was originally completely replicated on each process,
will grow beyond the initial refinement level only on the owner process of a given quadrant.
This should be easy on the interiors of partitions, but will complicate both the error checking
(neighbors may now be off-process) and the solution process(off-process copies of initial
leaf quadrants may have been refined). The first can be addressed by a similar solution-value

12

CSIS 400 Parallel Processing Fall 2008

exchange as you needed for phase 1 computation. The second may be addressed by doing
at least partial refinements of the off-process copies of quadrants involved in interprocess
communication.

Phase 3All of this adaptivity will likely introduce a load imbalance. If all or most of the refine-
ment takes place in just a few processes, those processes will have a larger workload during
each Jacobi iteration, causing other processes to wait before the boundary exchange. After a
refinement phase, we will implement a rebalancing phase, where the partitions of the initial
quadtree structure can be adjusted (and refined parts of the tree migrated appropriately) to
ensure that each process has approximately the same number of owned leaf quadrants. To
keep this relatively straightforward, the units of work that are allowed to be migrated are
the original leaf quadrants. This means that the same techniques you used to keep track of
off-process neighbor quadrants in phase 1 can be used here. The downside is that the gran-
ularity of the “work objects” that you are partitioning can get large after several refinement
steps have occurred, meaning a perfect load balance may not be possible. I suggest using the
same rule for deciding which parts of the quadtree are assigned to which processes. Traverse
the tree (only to the level of the original quadrants) and fillthe partitions. If you broadcast
the sizes of each quadrant (that is, the number of leaf quadrants below it), each process can
compute this new decomposition independently and determine which parts of its tree need
to be sent elsewhere.

Partitioning and Dynamic Load Balancing
We have considered partitioning and dynamic load balancingin some specific situations. Let’s
now think about it in more general circumstances.

Our assumption here is that we have a computation whose memory and computational require-
ments are dominated by some set of objects that we distributeamong a set of cooperating proces-
sors. We will most often think of this as a mesh being used to solve a PDE, but other structures are
possible.

Typically, one process is assigned to each processor. Data are distributed among the processes,
and each process computes the solution on its local data (itssubdomain). Inter-process communi-
cation provides data that are needed by a process but “owned”by a different process. This model
introduces complications including

1. assigning data to subdomains (i.e.,partitioning, or when the data is already distributed,
dynamic load balancing)

2. constructing and maintaining distributed data structures that allow for efficient data migra-
tion and access to data assigned to other processes, and

3. communicating the data as needed during the solution process.

The Partitioning Problem

13

CSIS 400 Parallel Processing Fall 2008

The computational work of PDE simulation is often associated with certain “objects” in the compu-
tation. For particle simulations, computation is associated with the individual particles; adjusting
the distribution of particles among processors changes theprocessor load balance. For mesh-based
applications, work is associated with the entities of the mesh — elements, surfaces, nodes — and
decompositions can be computed with respect to any of these entities or to a combination of entities
(e.g., nodes and elements).

The partitioning problem, then, is the division of objects into groups or subdomains that are as-
signed to cooperating processes in a parallel computation.

At its simplest, a partitioning algorithm attempts to assign equal numbers of objects to partitions
while minimizing communication costs between partitions.A partition’s subdomain, then, consists
of the data uniquely assigned to the partition; the union of subdomains is equal to the entire problem
domain. For example, the following figure shows a two-dimensional mesh whose elements are
divided into four subdomains.

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

Often communication between partitions consists of exchanges of solution data for adjacent ob-
jects that are assigned to different partitions. For example, in finite element simulations, “ghost
elements” representing element data needed by but not assigned to a subdomain are updated via
communication with neighboring subdomains.

Objects may have weights proportional to the computationalcosts of the objects. These nonuni-
form costs may result from, e.g., variances in computation time due to different physics being
solved on different objects, more degrees of freedom per element in adaptivep-refinement, or more
small time steps taken on smaller elements to enforce timestep contraints in local mesh-refinement
methods. Similarly, nonuniform communication costs may bemodeled by assigning weights to
connections between objects. Partitioning then has the goal of assigning equal total object weight
to each subdomain while minimizing the weighted communication cost.

Additionally, we may wish to form partitions of varying sizes to account for nonuniform compu-
tational capabilities of the processors to which the partitions are assigned.

Dynamic Repartitioning and Load Balancing Problem

Workloads in dynamic computations evolve in time, so a partitioning approach that works well
for a static problem or for a slowly-changing problem may notbe efficient in a highly dynamic
computation. For example, in finite element methods with adaptive mesh refinement, process
workloads can vary dramatically as elements are added and/or removed from the mesh. Dynamic

14

CSIS 400 Parallel Processing Fall 2008

repartitioning of mesh data, often calleddynamic load balancing, becomes necessary.

Dynamic repartitioning is also needed to maintain geometric locality in applications like crash
simulations and particle methods. In crash simulations, for example, high parallel efficiency is
obtained when subdomains are constructed of geometricallyclose elements. Similarly, in particle
methods, particles are influenced by physically near particles more than by distant ones; assigning
particles to processes based on their geometric proximity to other particles reduces the amount of
communication needed to compute particle interactions.

Dynamic load balancing has the same goals as partitioning, but with the additional constraints that
procedures

1. must operate in parallel on already distributed data,

2. must execute quickly, as dynamic load balancing may be performed frequently, and

3. should be incremental (i.e., small changes in workloads produce only small changes in the
decomposition) as the cost of redistribution of mesh data isoften the most significant part of
a dynamic load-balancing step.

While a more expensive procedure may produce a higher-quality result, it is sometimes better
to use a faster procedure to obtain a lower-quality decomposition, if the workloads are likely to
change again after a short time.

Partition Quality Assessment

The goal of partitioning is to minimize time to solution for the corresponding PDE solver. A
number of statistics may be computed about a decomposition that can indicate its suitability for
use in an application.

The most obvious measure of partition quality is computational load balance. Assigning the same
amount of work to each processor is necessary to avoid idle time on some processors. The most
accurate way to measure imbalance is by instrumenting software to determine processor idle times.
However, imbalance is often reported with respect to the number of objects assigned to each sub-
domain (or the sum of object weights, in the case of non-uniform object computation costs).

Computational load balance alone does not ensure efficient parallel computation. Communication
costs must also be considered. This task often corresponds to minimizing the number of objects
sharing data across subdomain boundaries, since the numberof adjacencies on the bounding sur-
face of each subdomain approximates the amount of local datathat must be communicated to
perform a computation. For example, in element decompositions of mesh-based applications, this
communication cost is often approximated by the number of element faces on boundaries between
two or more subdomains. (In graph partitioning, this metricis referred to as “edge cuts”.) A similar
metric is a subdomain’ssurface index, the percentage of all element faces within a subdomain that
lie on the subdomain boundary. Two variations on the surfaceindex can be used to estimate the
cost of interprocess communication. Themaximum local surface index is the largest surface index
over all subdomains, and theglobal surface index measures the percentage of all element faces
that are on subdomain boundaries [?]. In three dimensions, the surface indices can be thought ofas

15

CSIS 400 Parallel Processing Fall 2008

surface-to-volume ratios if the concepts of surface and volume are expanded beyond conventional
notions; i.e., the “volume” is the whole of a subdomain, and the elements on subdomain boundaries
are considered the “surface.” The global surface index approximates the total communication vol-
ume, while the maximum local surface index approximates themaximum communication needed
by any one subdomain.

16

