Computer Science 400

Parallel Processing
Siena College

SIENAcollege Fall 2008

Topic Notes: Scientific Computing

Adaptivity and Linked Structures

So far, we have looked at distributed data structures trebuofy arrays. Arrays usually are the
easiest to distribute; we simply assign a range of subsdgptach process. Quinn spends a lot of
time discussing local vs. global indexing.

In your Jacobi solver, solution points were distributedrdy¢hrough the domain:

If you wanted a more accurate solution, you could add mongtisol points. But since your pro-
gram used a uniform distribution of the points, better aacurequires adding points everywhere.

While this is possible, it increases the total amount of wak\quickly.

In some cases, we really only need more points in just pariseoflomain. In a heat distribution
problem, if there is a heat source in the northwest cornemnas only need more accuracy near
that heat source. Fewer points may provide a sufficiently@te solution further from the source.

CSIS 400 Parallel Processing Fall 2008

This is significantly more efficient in terms of the amount ofrgputation we need to do to obtain
a solution of acceptable accuracy.

If we know ahead of time where the extra work is needed, wedcasbkign extra points there
at the start of the computation. However, we often do not kttug/information. After all, we
probably wouldn’t be solving problems for which we alrea@dyé a solution handy, so adaptive
approach is taken. Periodically, the accuracy of the smiutan be checked, and extra points added
as needed. In the context of the Jacobi solver, we may haveshitid for the greatest allowable
difference in temperature between adjacent points. If tfierdnce exceeds the threshold, points
are added in that vicinity and the solution is recomputed.

Adaptivity with arrays is difficult, as the completely regubtructure is lost. In many casesnesh
structure, often implemented as a linked data structureses instead of arrays.

Meshes come in a variety of types. Meshes consisting of dasetals (hexahedra in three di-
mensions) are callestructured meshes. Meshes constructed from triangles (tetrahedtaee t
dimensions) are callednstructured meshes. There are big differences in terms of what happens
mathematically when you use them to solve a problem and howvthay are to generate, but for
our purposes here, the issues are similar.

Some terminology: a typical mesh consists of three-dinmradiregions or volumes, and their
boundingfaces, edges, andvertices. A data structure implementing the mesh will often allow
gueries such as “what faces bound this region” and “what®dgeincident on this vertex” to be
made efficiently.

The term “element” often is used to refer to the highest-disien entity, and in many cases is the
entity with which the solution is stored.

In fact, our Jacobi example is really just a computation onitoum quadrilateral structured mesh.
Here, the squares serve as the mesh elements and these toatsolution values.

CSIS 400 Parallel Processing Fall 2008

A (hypothetical) adaptive refinement of such a mesh mighk lde:

Here is a simple unstructured mesh:

The use of adaptivity (and some other considerations) sdats linked data structures for the
mesh. Here is the triangular mesh after a hypothetical nem operation:

CSIS 400 Parallel Processing Fall 2008

Such mesh structures may be stored in memory as arrays tégwoti with a full topological hier-
archy. We will soon consider an implementation of an adapgivuctured mesh usinggaadtree
data structure.

These sample unstructured meshes are stored in memory aigiregarchical linked structure.
These structures are implemented in a software librargd#tileSCOREC Mesh Database (MDB).
We could write programs to operate entirely on these mesrasrhany have been written) but it
is not yet parallel.

A second library, thé”arallel Mesh Database (PMDB) is built on top of MDB and provides for
distributed meshes.

We would like our distributed meshes to provide all the fumeality and flexibility that is provided
by the regular MDB. See the description and figures inAyaied Numerical Mathematics article.
PMDB takes care of all of the message passing to migrate tisb mwtities as appropriate and to
update all of the partition boundary structures.

A variety of algorithms can be used to determine just how strithute mesh elements among a set
of cooperating processes and several of tmassh partitioning algorithms will be topics of study
for us very soon.

Adaptive mesh refinement of PMDB meshes is provided by they s&ary) refdref library.

¢ Refinement of tetrahedra:

CSIS 400 Parallel Processing Fall 2008

e Coarsening of tetrahedra:

We can see some of this in action with some solution animstion

Computation on Quadtrees

We will consider a relatively simple example of an adaptigeputation. We return to our Jacobi
Iteration heat solver.

We could approach this problem using an unstructured medesasibed above, but that can get
complicated very quickly, even more so than the approach iVeéake. Instead, we will use a C
program to solve Laplace’s equation on a square domain usiogbi iteration that operates on
an adaptivequadtree structure. We will see how to parallelize this adaptive basolver, using
the SPMD model with MPI for message passing and finally, hownjelement a redistribution
procedure to rebalance the load after imbalance is intedlby adaptivity.

Quadtrees

A quadtree is a spatial tree data structure. Each node im¢bad called ajuadrant. Leaf nodes
are callederminal quadrants. These terminal quadrants will serve as the elements onhwwinc
will perform computation.

The tree’s root represents the entire domain, which, in asegis a square.

©)

The four children of the root each represent one quartereo$piace taken by the root.

AN

CSIS 400 Parallel Processing Fall 2008

These children can then be divided in four, continuing dosmany levels as desired. Different
parts of the domain may be refined to different levels.

Computing Sequentially on a Quadtree

The Jacobi iteration on a given quadtree is similar to thaifiten you've done in the array-based
versions. However, since there may be a deeper quadtreenia garts of the domain, some leaf
guadrants have neighbors more or less refined than theraselve

In the above figure, the element “E” should compute its valaged on the values of the shaded
neighbor quadrants. Note that E’s north neighbor is agtuafined one level further, so it has
two immediate north neighbors. Ideally, the north neighladue should be the average of the two
immediate quadrant neighbors, but it is sufficient to usevttiee at the shaded quadrant (which is
the average of the four leaf quadrants).

One obstacle to overcome is to locate neighboring quadedintgently. It is possible to maintain
direct neighbor links within your quadtree structure, botiynay find it more useful to search based

6

CSIS 400 Parallel Processing Fall 2008

on coordinate information. Each quadrant knows its own bwgbox coordinates and from this
can easily compute the coordinates of the adjacent quadaitiite same level. A nice feature of the
guadtree structure is that the quadrants that contain ainy iposspace can easily be found with a
simple traversal from the root, determining the correcldchi each step by comparing coordinates.
If the neighbor point is outside the root quadrant, you knowgply a boundary condition.

Sequential Program Requirements

To make the program more interesting in the context of adigytour program will allow a wider
range of initial and boundary conditions than your previmaglementations.

e Initial conditions are be specified by a C function that pde& values given (x,y) coordinates
of a point in the domain. Each leaf quadrant’s solution vatu@itialized to the value
obtained by passing the quadrant’s centroid to this functio

e Boundary conditions are also specified through C functiortee [&ft and right boundaries
take the y coordinate as a parameter and the top and bottondaoes take the x coordinate
as a parameter, allowing boundary conditions to be funstieaddition to simple constants.
When a quadrant needs to query a boundary condition when dorgpts value, it should
call the appropriate function.

e Special “internal boundary conditions” are specified by or@e C function. The function
takes a leaf quadrant and sets its value if the quadrantiogrday points that have internal
boundary values. For example, if there is a point heat soard®.25,0.25) keeping the
immediate area at a constant temperature of 2, this funatibset the solution value of any
guadrant containing (0.25,0.25) to 2. This function shdaddcalled on each leaf quadrant
during each Jacobi iteration step. If the function sets thedgant’s solution value, that value
should be used instead of the solution computed based oeigkbors.

These functions can be hard-coded into our program, but wkl dmplement a system where
initial and boundary conditions can be specified throughrdigaration file if time permits.

The program will take several parameters:
1. aninitial global refinement level, which in turn deteresrthe initial number of leaf quad-
rants
2. aJacobi iteration tolerance, similar to the toleranoefthe previous implementations
3. alimit on the number of Jacobi iteration steps

4. arefinement threshold, specifying the maximum diffeeeindemperature allowed between
adjacent leaf quadrants

5. alimit on the total number of refinement steps

CSIS 400 Parallel Processing Fall 2008

Here is the result of the program when run on the unit squatte twex = 0 boundary condition
set to2y, the other side boundaries fixed at 0, and a special boundaditon setting the point at
(0.75,0.75) to 3. The entire domain is initialized to 0. Theial quadtree is refined 3 levels (64
leaf quadrants), a Jacobi tolerance of 0.0001 with a maximumber of iterations of 2000, and a
refinement threshold of 0.05 and a maximum number of refinefaeels of 3.

Jacobi lteration Solution

Sequential Program Design and Implemenation

The structure of the program should look something like this

create quadtree to initial refinement |evel
set initial solution values of leaf quadrants to initial conditions
do {
do {
foreach | eaf quadrant {
if (!special boundary condition applied)
do Jacobi iteration step

}

} while (error > Jacobi tolerance & jac_steps < jac_max)
refine quadrants based on refinenent threshold
} while (any quadrants were refined &k ref _steps < ref_max)

Even though our program is written in C instead of an objeiEnted language like C++ or Java,
we will follow good object-oriented design. One way to dostis to separate the data structures
and functionality of the quadtree from the solution process

We'll start by looking at the main program, then look at quedtrelated structures and functions
as we encouter them.

Some things to notice at this point:

CSIS 400 Parallel Processing Fall 2008

e The list of local variables imai n is very short - just the pointer to the root of our quadtree
and several solution parameters and miscellaneous vesitiké loop indices and file point-
ers.

e The program requires 6 command-line arguments. In addibahe solution parameters
mentioned above, we have an “output level” that we can uspdoify how frequently our
program will print solution data.

e We create the initial quadtree structure: the parameterdher bounding box (top, left,
bottom, right), the initial solution value, and the pareairp (NULL for the root).

e Next, we have to do our initial global refinement.

— We do this with avisitor function that will in turn call acallback function with each
leaf quadrant as a parameter.

— The functionvi si t _al | _| eaf _quadr ant s is, as you might suspect, a recursive
function. It takes as parameters the quadrant whose leagde he visited, a pointer
to the function to call on each leaf, and a pointer to somecajpecified data that will
also be passed along to the callback function. The funditwo options are:

« if we are already at a leaf, call the callback function
« If we are an interior quadrant, make a recursive call to t&ori function on each
child quadrant.

— In this case, we use a callback functido_r ef i ne, which performs one level of
refinement on each leaf quadrant.

— Ourdo_r ef i ne function just calls a quadtree functioef i ne_| eaf .quadr ant .
— Ther ef i ne_| eaf _quadr ant function:

x Checks to make sure the quadrant is in fact a leaf. Note the fube dunction
i s_| eaf _quadr ant to check and the use of the madh8SERT to terminate
our program with an error condition if this is not a leaf.

x Creates 4 new leaf quadrants, e%cthe size of the original leaf, and with the
former leaf as their parent.

— This happens as many times as we specified for the initialefemt leveli(ni t _r ef),
and results in a uniform quadtree witi#*-/ |eaves.

e Next, we need to set our initial conditions based on the fangirovided.

— We again use our leaf quadrant visitor (leaves as the onlgrqnés that have a solution
value in our implementation) this time widet _i ni t .cond as the callback function.

— Theset _i ni t _cond function calls our initial condition functionni ti al _cond,
with the coordinates of the centroid of the leaf to get therappate initial condition
value for this leaf, then callguadr ant _set _val ue to assign it to the leaf.

e For the moment, we’ll ignore the solution printing and loaktee solution process.

9

CSIS 400 Parallel Processing Fall 2008

— Our main loop is a nestedlo/ whi | e. The outer loop guides solutions on different
refinements of the tree. The inner loop is the Jacobi iteratmresponding to what we
had done previously. We'll consider that loop to start.

— The solution step is done with another visitor/callback.

x Like you did in your implementations earlier, we always do tterations in suc-
cession: one to compute a second solution from the curieem, dnother to com-
pute current again based on the second.

The callbackdo_j acobi i t er phasel computes what we calpr evi ous
fromval ue, anddo_j acobi _i t er phasel computewval ue frompr evi ous.

x Each of these follows the same general procedure:

- Check to see if there is a special boundary condition thategpd this leaf.
This is done with thappl! y ot her _bc function. If a condition was applied,
the function returns true and we’re done with this leaf.

- Otherwise, we need to find our 4 neighbor values that we’llN\@¥aging to
get our new value. This is not as simple as changing arragigglby one like
we did when the computation was being done on a simple 2D.array

- Neighbor-finding in a quadtree involves a simple searchuhgoiadtree code,
it is done with the functiomei ghbor _quadr ant , which takes any quad-
rant and a direction and returns either a neighboring quedinathe desired
direction, orNULL if there is no neighbor (i.e., we are on a boundary).

It is not even always clear what we mean by the “north neighlbbere is
potentially a whole hierarchy of quadrants neighboringwus given direction.
What we need for our solution is the neighkairour own level in the tree
hierarchy. If our neighbor is not refined as far as us, we’llagpead and use
the leaf at a higher level. If it is refined more, we want to ineléaf quadrants
adjacent to us, but only count them once, even if more thansoadjacent.
We find the appropriate neighbor by finding a point in spacevteeknow will
be inside our neighbor in a given direction, then searchengtfat point in the
tree.

Something to think about: we could start this search at tlo¢ and work
down, but can we do better by searching up the tree to find areseancestor
that contains the desired point, then back down to the apiptedeaf? This
is faster when our neighbors are most likely our siblings ansins. Only
in those cases where our neighbor is in a different level dprd will we
need to search all the way back to the root. This is the seaechss in the
nei ghbor _quadr ant function.

- Any neighbor search that returhsLL indicates that we've gone off the edge
of the universe and should use a boundary condition insté&ddo this with
thebc _* functions.

- With the 4 neighbor or boundary values to average ready, wgate the new
value and store it in the quadrant.

- In the phase 2 computation, we also check the error valugathe maximum
encountered so far being passed inrager r . Note that this uses the extra

10

CSIS 400 Parallel Processing Fall 2008

callback parameter to pass the pointer#o n’s local variablarax_j ac _di f f
to the callbacks. At the end, we’ll have the maximum errorilataée in
max_j ac_di ff.

— After the 2 iterations, we check to see if we've reached orardolerance or the max-
imum number of iterations.

We've ignored an important part here so far. The adaptiVibat's the outer loop.

¢ Recall that we want to find places where adjacent quadrants $@ution values whose
difference exceeds a given tolerance. When we find such isiisatwe want to refine the
tree in that area to have a more accurate solution. That's dppening in the outer loop.

e The functioncal c_error _and_r ef i ne is the heart of the refinement functionality. It
determines where refinement is needed, performs that regimetien returns the number
of refinements that were performed. (If there are 0, we cgmstocessing, since we'd only
recompute the same solution we just computed on the pregiaa$

e The implementation ofal c_err or _and_r ef i ne again makes good use of our visitor
function in each phase of our refinement procedure:

— Marking quadrants for refinement: tebheck_i f _r ef i nenent _needed function.
We locate each of our neighbors, then see if any of them hdué@ovalues too far
from our own. If one is found, we mark ourself for refinement.

Marking for refinement involves a little trick in the quaddrdata structure. Since we
don’t have children when we’re a leaf, we use a non-zero valttee third child pointer
to indicate the refinement mark.

— Refining marked quadrants: thef i ne_i f _mar ked function. If the leaf being vis-
ited is marked for refinement, we refine it. Notice that the mgwdrants inherit the
solution value from their parent. This means we use the tdstien on one grid as the
initial solution on the next.

Finally, a bit about printing the solution. As you learnecie\vn the non-adaptive versions you
wrote, it is nearly impossible to understand the solutioselolaonly on printing out values from
the grid. This problem becomes even more difficuly once whkide adaptivity. Our approach is
to print solutions to a file in a format that includes the caoates of each leaf quadrant and its
solution value. These values may then be plotted with griugoscript that | used to generate
some of the solution plots in these notes is available@sut i onpl ot . gp. This is a very
simple gnuplot script and | am sure you can do better, butté thee job done.

Parallelization
Our ultimate goal is to parallelize this program.

There are many choices to make when parallelizing a prograr as this. Which parts of the
computation are to be performed by each processor? Whatgsdhalarity of the units of work to

11

CSIS 400 Parallel Processing Fall 2008

be divided among the processors? What information must betana¢d and what communication
is needed to support the computation once the work has bewled? Will the workloads need to
be adjusted following adaptive steps? How can such a retiatabe performed?

We will consider parallelization using the following phdsgevelopment process:

Phase 1Build the initial quadtree to the requested refinement lduat yeplicate it completely on
each process. Assign a unique owner process to each leafantiagissentially partitioning
the quadtree. Each quadrant’s solution is computed onlysbgwner, but quadrants along
partition boundaries will need to exchange solution valoesveen iterations. There are
many possible approaches to this partitioning problemitistiould be fairly straightforward
if you divide the quadrants into partitions based on a traegetsal. If you have: leaf
guadrants ang processes, assign the fifstto the first partition (process 0), the nexto
the next partition (process 1), and so on, handling remaiqdadrants in some reasonable
way. If child quadrants are ordered NW-NE-SW-SE, a pantitig of a base quadtree refined
to three levels might be done as follows:

For this phase, we need to implement the message passingdheedend solution infor-
mation from owned quadrants on partition boundaries toetulser processes (and only to
those other processes) that will need the information duthie solution process. Note that
we are ignoring adaptivity for this phase, so the workinggpamn should compute only on
the initial quadtree. Solution output procedures are neééaleompare the solution from the
parallel version with those from the sequential version.

Phase 2Now, to reintroduce adaptivity. Adaptivity will work muchsat did in the sequential
program, except that when a quadrant is refined, it need enlgfined on the owner process.
This means that the quadtree, which was originally comiyleeplicated on each process,
will grow beyond the initial refinement level only on the owpeocess of a given quadrant.
This should be easy on the interiors of partitions, but vatinplicate both the error checking
(neighbors may now be off-process) and the solution pro(@sprocess copies of initial
leaf quadrants may have been refined). The first can be addrbgs similar solution-value

12

CSIS 400 Parallel Processing Fall 2008

exchange as you needed for phase 1 computation. The secgnidenaaldressed by doing
at least partial refinements of the off-process copies otlqrds involved in interprocess
communication.

Phase 3All of this adaptivity will likely introduce a load imbalamc If all or most of the refine-
ment takes place in just a few processes, those processésvala larger workload during
each Jacobi iteration, causing other processes to waitédotfe boundary exchange. After a
refinement phase, we will implement a rebalancing phasetenthe partitions of the initial
guadtree structure can be adjusted (and refined parts ofethentigrated appropriately) to
ensure that each process has approximately the same nufrivened leaf quadrants. To
keep this relatively straightforward, the units of work ttlase allowed to be migrated are
the original leaf quadrants. This means that the same tgebgsiyou used to keep track of
off-process neighbor quadrants in phase 1 can be used heeedolvnside is that the gran-
ularity of the “work objects” that you are partitioning caatdarge after several refinement
steps have occurred, meaning a perfect load balance max possible. | suggest using the
same rule for deciding which parts of the quadtree are asgdigmwhich processes. Traverse
the tree (only to the level of the original quadrants) andtid partitions. If you broadcast
the sizes of each quadrant (that is, the number of leaf qotedbelow it), each process can
compute this new decomposition independently and determtrich parts of its tree need
to be sent elsewhere.

Partitioning and Dynamic Load Balancing

We have considered partitioning and dynamic load balanicirgpme specific situations. Let's
now think about it in more general circumstances.

Our assumption here is that we have a computation whose myesiar computational require-
ments are dominated by some set of objects that we distrémteng a set of cooperating proces-
sors. We will most often think of this as a mesh being used lieesoPDE, but other structures are
possible.

Typically, one process is assigned to each processor. Datdistributed among the processes,
and each process computes the solution on its local datldi®main). Inter-process communi-
cation provides data that are needed by a process but “ovned'different process. This model
introduces complications including

1. assigning data to subdomains (i.partitioning, or when the data is already distributed,
dynamic load balancing)

2. constructing and maintaining distributed data strieguhat allow for efficient data migra-
tion and access to data assigned to other processes, and

3. communicating the data as needed during the solutiorepsoc

The Partitioning Problem

13

CSIS 400 Parallel Processing Fall 2008

The computational work of PDE simulation is often assodat#h certain “objects” in the compu-
tation. For particle simulations, computation is assedawith the individual particles; adjusting
the distribution of particles among processors changegrtfeessor load balance. For mesh-based
applications, work is associated with the entities of theslme- elements, surfaces, nodes — and
decompositions can be computed with respect to any of thgiee or to a combination of entities
(e.g., nodes and elements).

The partitioning problem, then, is the division of objeat#igroups or subdomains that are as-
signed to cooperating processes in a parallel computation.

At its simplest, a partitioning algorithm attempts to assegjual numbers of objects to partitions
while minimizing communication costs between partitioAgartition’s subdomain, then, consists
of the data uniquely assigned to the partition; the uniombfizmains is equal to the entire problem
domain. For example, the following figure shows a two-dinn@msl mesh whose elements are
divided into four subdomains.

Subdomain 1 Subdomain 3

Subdomain 2

Subdomain 4

Often communication between partitions consists of exgharof solution data for adjacent ob-

jects that are assigned to different partitions. For examipl finite element simulations, “ghost

elements” representing element data needed by but nohasiktg a subdomain are updated via
communication with neighboring subdomains.

Objects may have weights proportional to the computationats of the objects. These nonuni-
form costs may result from, e.g., variances in computatiore tdue to different physics being
solved on different objects, more degrees of freedom perai¢in adaptive-refinement, or more
small time steps taken on smaller elements to enforce tepesintraints in local mesh-refinement
methods. Similarly, nonuniform communication costs mayrmeled by assigning weights to
connections between objects. Partitioning then has theoj@asigning equal total object weight
to each subdomain while minimizing the weighted commurocatost.

Additionally, we may wish to form partitions of varying se& account for nonuniform compu-
tational capabilities of the processors to which the partst are assigned.

Dynamic Repartitioning and Load Balancing Problem

Workloads in dynamic computations evolve in time, so a paring approach that works well
for a static problem or for a slowly-changing problem may betefficient in a highly dynamic
computation. For example, in finite element methods withptida mesh refinement, process
workloads can vary dramatically as elements are added raredfmved from the mesh. Dynamic

14

CSIS 400 Parallel Processing Fall 2008

repartitioning of mesh data, often calldghamic load balancing, becomes necessary.

Dynamic repatrtitioning is also needed to maintain geométicality in applications like crash
simulations and particle methods. In crash simulationsei@mple, high parallel efficiency is
obtained when subdomains are constructed of geometridake elements. Similarly, in particle
methods, particles are influenced by physically near pastimore than by distant ones; assigning
particles to processes based on their geometric proximiogrer particles reduces the amount of
communication needed to compute particle interactions.

Dynamic load balancing has the same goals as partitionurigyith the additional constraints that
procedures

1. must operate in parallel on already distributed data,
2. must execute quickly, as dynamic load balancing may biegeed frequently, and

3. should be incremental (i.e., small changes in workloaddyxre only small changes in the
decomposition) as the cost of redistribution of mesh dabdtén the most significant part of
a dynamic load-balancing step.

While a more expensive procedure may produce a higher-gualsult, it is sometimes better
to use a faster procedure to obtain a lower-quality decoimposif the workloads are likely to
change again after a short time.

Partition Quality Assessment

The goal of partitioning is to minimize time to solution fdret corresponding PDE solver. A
number of statistics may be computed about a decomposhiatncan indicate its suitability for
use in an application.

The most obvious measure of partition quality is compurtetidoad balance. Assigning the same
amount of work to each processor is necessary to avoid ite ¢in some processors. The most
accurate way to measure imbalance is by instrumenting acétt@ determine processor idle times.
However, imbalance is often reported with respect to thelrarf objects assigned to each sub-
domain (or the sum of object weights, in the case of nhon-umifobject computation costs).

Computational load balance alone does not ensure efficieallgdacomputation. Communication
costs must also be considered. This task often correspondsimizing the number of objects
sharing data across subdomain boundaries, since the nawinbejacencies on the bounding sur-
face of each subdomain approximates the amount of localtatamust be communicated to
perform a computation. For example, in element decompositof mesh-based applications, this
communication cost is often approximated by the numberesheht faces on boundaries between
two or more subdomains. (In graph partitioning, this magiieferred to as “edge cuts”.) A similar
metric is a subdomain'surface index, the percentage of all element faces within a subdomain that
lie on the subdomain boundary. Two variations on the surfiagex can be used to estimate the
cost of interprocess communication. Tineximum local surfaceindex is the largest surface index
over all subdomains, and tlgtobal surface index measures the percentage of all element faces
that are on subdomain boundari& [In three dimensions, the surface indices can be thoughd of

15

CSIS 400 Parallel Processing Fall 2008

surface-to-volume ratios if the concepts of surface andmel are expanded beyond conventional
notions; i.e., the “volume” is the whole of a subdomain, drelélements on subdomain boundaries
are considered the “surface.” The global surface indexaprates the total communication vol-
ume, while the maximum local surface index approximatesrthgimum communication needed
by any one subdomain.

16

