
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: OpenMP

We have seen how to implement algorithms using pthreads – shared variables can be declared
globally, private variables can be declared local to our thread function or functions called by the
thread function.

But a compiler should be able to do a little of this work for us – convert some higher level constructs
into appropriate thread calls and mutex locks.

We saw that the Sun compilers could do some parallelization completely automatically, but this
doesn’t always work, and it may not choose to parallelize theway we would like. A standard
set of compiler directives and library functions calledOpenMP have been developed to allow
programmers to specify parallelism.

Chapter 17 of Quinn describes OpenMP. We will go through some examples here.

As always, we start with a “Hello, world” program:

See: /cluster/examples/openmp hello

Things to note about the OpenMP hello world:

• We includeomp.h, the OpenMP header file.
• We have some odd syntax just inside ofmain() that starts a parallel block:

#pragma omp parallel private(nthreads, tid)

It is a preprocessor directive, so the initial pass of the C compiler will replace this with some
code to start up a number of tasks.
It means the block that follows is a parallel block which should give private copies to each
task of the variablesnthreads andtid.
Note the seemlingly extraneous curly braces following the#pragma. They define the extent
of the parallel block.

• Two self-explanatory query functions are called inside theparallel block:

• omp get thread num()
• omp get num threads()

• To compile this on Solaris (bullpen), we need to use Sun’scc with options-xO3 and
-xopenmp=parallel.

• To request a number of threads to be created, we set the environment variableOMP NUM THREADS
to the number of threads we want. The system will only start a number of threads up to the
number of available processors, by default.



CSIS 400 Parallel Processing Fall 2008

Another example, back to the matrix-matrix multiply:

See: /cluster/examples/matmult openmp

Again, we includeomp.h but the only other change from a straightforward serial version is the

#pragma omp parallel for

which tells OpenMP to parallelize the upcoming for loop.

• Setting the maximum number of threads (OMP NUM THREADS environment variable or the
omp set num threads() function requests a certain number of threads. You are not
guaranteed to get that many.

• When a thread reaches a#pragma omp parallel directive, it creates a team of threads
and becomes the master of the team. The master is a member of that team and has thread
number 0 within that team.

• Starting from the beginning of this parallel region, the code is duplicated and all threads will
execute that code.

• There is an implied barrier at the end of a parallel section. Only the master thread continues
execution past this point.

We can also take more control, similar to the way we did with pthreads:

• Explicit domain decomposition:

See: /cluster/examples/matmult omp explicit

Things to note:

• The simple thread creation and destruction, callingworker()
• The worker has a bunch of local variables, all of which are private to the calling thread
• The computation of the row range for each thread, based onnumthreads andthreadid

• Bag of tasks:

See: /cluster/examples/matmult omp bagoftasks

Things to note:

• No worker function here – the threads are defined by the block inside the{ ... }
pair following the#pragma omp parallel directive.

• Theshared andprivate clauses tell OpenMP which variables that we use inside
the multithreaded block should be shared or private to each thread.

2



CSIS 400 Parallel Processing Fall 2008

• The critical section for the concurrent access tonext avail task is taken care of by
the#pragma omp critical(mutex) directives. By naming the critical sections
with the name “mutex” they are essentially the same criticalsection (as both deal with
the same variable). The name “mutex” here is just a name – it could be anything. This
replaces all the declarations, initialization, locking and unlocking, and destruction of
the mutex in the pthread version.

More clauses to parallel directives
A parallel directive can take a number of clauses to define howvariables are to be treated.

• private(variables): indicate that the variables in the list are to be private to each
thread created.

Any previous value is not seen by the threads, and that value is still there when the parallel
block ends.

See: /cluster/examples/openmp private

• shared(variables): indicate that the variables in the list are to be shared among all
threads created.

Any previous value is seen by all threads, and any changes made by threads will persist when
the parallel block ends.

See: /cluster/examples/openmp shared

• firstprivate(variables): Give the copies of the variables within each thread the
initial value which is the the value the variable had outsidethe parallel block.

• lastprivate(variables): Take the values of the variables in the “last” thread (for a
parallel for loop, or parallel sections) and store that in the variable outside the parallel block.

• reduction(op:variable): Perform a reduction on the variable and store the reduced
value in the variable when the parallel block finishes.

See: /cluster/examples/openmp reduction

What is areduction? Basically, the operator is applied to combine the given variable’s value
in each thread, and the overall result is stored in the variable when the parallel block returns.

We’ll see many examples when we talk about message passing. Here’s one that’s a little
more interesting than the made up example above:

See: /cluster/examples/matmult omp explicit2

Other parallel directives
There are several other directives worth looking at a bit:

3



CSIS 400 Parallel Processing Fall 2008

• sections:

Define sections of code (that aren’t a loop) that can be executed concurrently. An overly
simplistic example:

See: /cluster/examples/openmp sections

Each defined section is a block that can be assigned to a thread.

This is useful when we have different tasks to assign to each thread created.

• single:

Used within a parallel block, this specifies that the block inside thesingle should be
executed by exactly one thread.

• master:

This is a lot likesingle, but we are guaranteed that the master thread does the execution.

• critical:

We’ve seen this – it defines a critical section.

• barrier:

Used within a parallel block, this causes the threads to synchronize at this point. This could
be used, for example, to make sure that the threads all complete some preliminary computa-
tion before moving on to their next step.

• atomic:

Force a simple statement that modifies a single variable to beatomic. It is essentially a
critical section, but since it is more restrictive, the compiler may choose more efficient tech-
niques.

Yet another matrix-matrix multiply example that uses some of these:

See: /cluster/examples/matmult omp explicit3

Loop Scheduling
Before we consider the idea of loop scheduling in OpenMP, we look at a new example – computing
the points in the Mandelbrot set.

Mandelbrot Set

From the Wikipedia article:

In mathematics, theMandelbrot set, named after Benoit Mandelbrot, is a set of points
in the complex plane, the boundary of which forms a fractal. Mathematically, the
Mandelbrot set can be defined as the set of complexc-values for which theorbit of 0
under iteration of the complex quadratic polynomialxn+1 = xn

2 +c remains bounded.
That is, a complex number,c, is in the Mandelbrot set if, when starting withx0 = 0

4



CSIS 400 Parallel Processing Fall 2008

and applying the iteration repeatedly, the absolute value of xn never exceeds a certain
number (that number depends onc) however largen gets.

E.g. c = 1 gives the sequence0, 1, 2, 5, 26, ... which leads to infinity. As this sequence
is unbounded, 1 is not an element of the Mandelbrot set.

On the other hand,c = i gives the sequence0, i, (1 + i), i, (1 + i), i, ... which is
bounded, and so it belongs to the Mandelbrot set.

For graphical displays of the Mandelbrot set, such as what you can see on the Wikipedia page,
we can assign the pixels of our display image to points in the complex plane. For each point, we
compute whether the point it in the Mandelbrot set. We will not worry too much about the specifics
of the computation, but we note a few things:

• The computation is iterative, and some points are more expensive than others to compute
(more iterations).

• When parallelizing, we might need to take this into account.

We have an OpenMP parallelization of a Mandelbrot set calculator:

See: /cluster/examples/mset openmp

Most of this program is pretty straightforward.

• We figure out what we’re supposed to compute from the command line, using reasonable
default values.

• We have a parallelized for loop that computes the values in our array – 0 if the point is not
in the M-set, 1 if it is.

• Note theschedule(runtime) at the end of our OpenMP directive – more on this in a
bit.

• We then print out which thread computed each row and how many total rows each thread
computed.

• We optionally generate an image, but this is currently broken.

To this point, we have allowed OpenMP to do what it feels best in terms of how to break up the
iterations in a parallelfor loop. That’s fine for the matrix-matrix multiply, where every row is the
same cost.

However, in this case, each pixel has a potentially different cost.

• pixels far from the M-set can be determined to be outside the set very quickly – in just a few
iterations.

5



CSIS 400 Parallel Processing Fall 2008

• pixels inside the set require (at least when using our simpleprocedure) that we continue
iterating until we have reached the maximum number of iterations.

• pixels near the set will require more iterations.

Unless we get lucky (as is the case for the 2-thread version ofthe whole set calculation), each
thread is going to have a different workload assigned.

The defaultstatic decomposition will be insufficient.

We have already seen one way to deal with this problem - the bagof tasks approach. We could
implement a bag of tasks in OpenMP like we did for pthreads.

Fortunately, OpenMP makes it even easier by allowing us to provide loop scheduling “hints” as to
how to schedule the tasks in a loop:

#pragma omp parallel for schedule(kind [,chunk])

In the above,kind specifies the loop scheduling type and the optional parameter chunk specifies
chunk sizes.

Here are the valid schedules we can specify for a loop withn iterations to be executed byt threads:

• static – assign aboutn
t

iterations to each thread

• static,C – interleaved allocation of chunks ofC contiguous iterations to threads

• dynamic – the bag of tasks equivalent, where iterations are assignedto threads one at a
time as they are completed

• dynamic,C – same idea, but iterations are assigned in contiguous chunks of sizeC

• guided,C – another dynamic allocation, but using theguided self-scheduling idea. Here,
we start by allocating large chunks of work to each thread, then as they finish, successively
smaller chunks are assigned to threads as they complete their work, with the smallest chunk
allowed to be assigned specified byC.

• guided – same as above, but using the default value of 1 forC.

• runtime – specify one of the above options using theOMP SCHEDULE environment vari-
able.

Our program uses theruntime scheduler so we can experiment without having to recompile.

6


