
Computer Science 400
Parallel Processing
Siena College
Fall 2008

Topic Notes: Message Passing Interface (MPI)

The Message Passing Interface (MPI) was created by a standards committee in the early 1990’s.

• motivated by the lack of a good standard

– everyone had their own library

– PVM demonstrated that a portable library was feasible

– portablity and efficiency were conflicting goals

• The MPI-1 standard was released in 1994, and many implementations (free and proprietary)
have since become available

• MPI specifies C and Fortran interfaces (125 functions in the standard), more recently C++
as well

• parallelism is explicit - the programmer must identify parallelism and implement a parallel
algorithm using MPI constructs

• MPI-2 is an extention to the standard developed later in the 1990’s and there are now some
implementations

MPI Terminology

• Rank – a unique identifier for a process

– values are 0...n − 1 whenn processes are used

– specify source and destination of messages

– used to control conditional execution

• Group – a set of processes, associated with acommunicator

– processes in a group can take part in a collective communication, for example

– we often use the predefined communicator specifying the group of all processors in a
communication:MPI COMM WORLD

– the communicator ensures safe communication within a group- avoid potential con-
flicts with other messages



CSIS 400 Parallel Processing Fall 2008

• Application Buffer - application space containing data to send or received data

• System Buffer - system space used to hold pending messages

Major MPI Functions
MPI Simple Program - basic MPI functions

We begin with a simple “Hello, World” program.

See:/cluster/examples/mpihello

MPI calls and constructs in the “Hello, World” program:

• #include <mpi.h> - the standard MPI header file

• MPI Init(int *argc, char *argv[]) - MPI Initialization

• MPI COMM WORLD - the global communicator. Use forMPI Comm args in most situations

• MPI Abort(MPI Comm comm, int rc) - MPI Abort function 3

• MPI Comm size(MPI Comm comm, int *numprocs) - returns the number of pro-
cesses in a given communicator innumprocs

• MPI Comm rank(MPI Comm comm, int *pid) - returns the rank of the current pro-
cess in the given communicator

• MPI Get processor name(char *name, int *rc) - returns the name of the node
on which the current process is running

• MPI Finalize() - clean up MPI

The model of parallelism is very different from what we have seen. All of our processes exist
for the life of the program. We are not allowed to do anything beforeMPI Init() or after
MPI Finalize(). We need to think in terms of a number of copies of thesame program all
starting up atMPI Init().

To run, compile withmpicc, run withmpirun according to the instructions on the course web
page.

MPI Point-to-Point message functions

There are just a few that we’ll use frequently:

• MPI Send/MPI Recv - standard blocking calls (may have system buffer)

• MPI Isend/MPI Irecv - standard nonblocking calls

2



CSIS 400 Parallel Processing Fall 2008

• wait calls for nonblocking communications:MPI Wait, MPI Waitall, MPI Wait-
some, MPI Waitany

And there are many variations that we won’t likely use much:

• MPI Ssend/MPI Issend - synchronous blocking/nonblocking send

• MPI Bsend/MPI Ibsend - buffered blocking/nonblocking send - programmer allocates
message buffer withMPI Buffer attach

• MPI Rsend/MPI Irsend - ready mode send - matching receivemust have been posted
previously

• MPI Sendrecv - combine send/recv into one call before blocking

• also:MPI Probe andMPI Test calls

Blocking Point-to-point Communication

A simple MPI program that sends a single message using blocking communication:

See:/cluster/examples/mpimsg

• All MPI calls return a status value, and it’s a good idea to check it as is done in this example
for theMPI Init call.

– Most class examples will not be thorough in this to keep things looking simpler.

– For our purposes, any MPI error will cause the program to terminate with an error
message, so it usually is not that important to us.

– When developing large-scale software, we often wish to return error codes rather than
crash the whole program, so error checking becomes more important there.

– The error checking includes a messy little chunk of code to print out appropriate mes-
sages, so it’s probably worth putting this into your own error reporting function if you
want to use it.

• MPI Status status - structure which contains additional info following a receive. We
often ignore it, but we will see some instances where it comesin handy.

• MPI Send(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI Comm comm) - blocking send - does not return until the corresponding receive
is completed. sendscount copies of data of typetype located inbuf to the processor
with pid dest.

• MPI Recv(void *buf, int count, MPI Datatype type, int src, int
tag, MPI Comm comm, MPI Status status) - blocking receive - does not return
until the message has been received.src may be specific PID orMPI ANY SOURCE which
matches, well, a message from any source.

3



CSIS 400 Parallel Processing Fall 2008

• MPI Datatype examples:MPI CHAR, MPI INT, MPI LONG, MPI FLOAT, MPI -
DOUBLE, MPI BYTE, MPI PACKED

Non-blocking Point-to-point Communication

A slightly more interesting MPI program that sends one message from each process with non-
blocking messages:

See:/cluster/examples/mpiring

• MPI Request request - structure which contains info needed by nonblocking callsto
check on their status or to wait for their completion.

• MPI Isend(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI Comm comm, MPI Request *req) - nonblocking send - returns immedi-
ately.buf must not be modified until a wait function is called using thisrequest.

• MPI Irecv(void *buf, int count, MPI Datatype type, int source,
int tag, MPI Comm comm, MPI Request *req) - nonblocking receive - returns
immediately.buf must not be used until a wait function is called using this request.

• MPI Wait(MPI Request *req, MPI Status *status) - wait for completion of
message which hadreq as its request argument. Additional info such as source of a message
received asMPI ANY SOURCE is contained instatus.

TheMPI ANY SOURCE option is used in this modified version of the example:

See:/cluster/examples/mpiring anysource

Collective Communication

We often need to perform operations at a higher level than simple sends and receives.

See:/cluster/examples/mpicoll

• MPI Barrier(MPI Comm comm) - synchronize procs

• MPI Bcast(void *buf,int count,MPI Datatype type,int root,MPI Comm
comm) - broadcast - sendscount copies of data of typetype located inbuf on procroot
to buf on all others.

• MPI Reduce(void *sendbuf,void *recvbuf,int count, MPI Datatype
type,MPI Op op,int root,MPI Comm comm) - combines data insendbuf on
each proc using operationop and stores the result inrecvbuf on procroot

• MPI Allreduce() - same as reduce except result is stored inrecvbuf on all procs

• MPI Op values -MPI MAX, MPI MIN, MPI SUM, MPI PROD, MPI LAND, MPI BAND,
MPI LOR, MPI BOR, MPI LXOR, MPI BXOR, MPI MAXLOC, MPI MINLOC plus user-
defined

4



CSIS 400 Parallel Processing Fall 2008

• MPI Scan(void *sendbuf, void *recvbuf, int count, MPI Datatype
type, MPI Op op, MPI Comm comm) - parallel prefix scan operations

Scatter/Gather – Higher-level Collective Communication

See:/cluster/examples/mpiscatgath

• MPI Scatter(void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm) - root sendssendcount items fromsendbuf to each processor.
Each processor receivesrecvcount items intorecvbuf

• MPI Gather(void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, int root,
MPI Comm comm) - each proc sendssendcount items fromsendbuf to root. root
receivesrecvcount items intorecvbuf from each proc

• MPI Scatterv/MPI Gatherv work with variable-sized chunks of data

• MPI Allgather/MPI Alltoall variations of scatter/gather

To understand what is going on with the various broadcast andscatter/gather functions, consider
this figure, taken from the MPI Standard, p.91

5



CSIS 400 Parallel Processing Fall 2008

Sample MPI Applications
Conway’s Game of Life

The Game of Life was invented by John Conway in 1970. The game isplayed on a field of cells,
each of which has eight neighbors (adjacent cells). A cell iseither occupied (by an organism) or
not. The rules for deriving a generation from the previous one are:

• Death: If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbors, it dies (of either
boredom or overcrowding, as the case may be)

• Survival: If an occupied cell has 2 or 3 occupied neighbors, it survives to the next generation

• Birth: If an unoccupied cell has 3 occupied neighbors, it becomes occupied.

The game is very interesting in that complex patterns and cycles arise. Do a google search to find
plenty of Java applets you can try out.

I like the one here:

6



CSIS 400 Parallel Processing Fall 2008

http://www.math.com/students/wonders/life/life.html

My implementation is not graphical, so it’s a lot less fun. Itplays the game, but only computes
statistics.

Serial version:See:/cluster/examples/life

MPI version:See:/cluster/examples/mpilife

• Since our memory is not shared, we only allocate enough memory on each process to hold
the rows that will be computed by that process, plus a “ghost”row on each side that will
allow simple computation of our rows.

• When we need to get a global count of some statistic, such as thecount of live cells at the
start, we use a reduction.

• The communication is done with two pairs of sends and receives. Here, we use nonblocking
calls, then wait for their completion with the waitall call.

Matrix-Matrix Multiplication

Matrix-matrix multiplication using message passing is notas straightforward as matrix-matrix
multiplication using shared memory and threads. Why?

• Since our memory is not shared, which processes have copies of the matrices?

• Where does the data start out? Where do we want the answer to be inthe end?

• How much data do we replicate?

• What are appropriate MPI calls to make all this happen?

The MPI version of Conway’s Game of Life used a distributed data structure. Each process main-
tains its own subset of the computational domain, in this case just a number of rows of the grid.
Other processes do not know about the data on a given process.Only that data that is needed to
compute the next generation, a one-cell overlap, is exchanged between iterations.

Think about that – no individual process has all of the information about the computation. It only
works because all processes are cooperating.

The “slice by slice” method of distributing the grid was chosen only for its simplicity of implemen-
tation, both in the determination of what processes are given what rows, and the straightforward
communication patterns that can be used to exchange boundary data. We could partition in more
complicated patterns, but there would be extra work involved.

The possiblities for the matrix-matrix multiply are numerous. Now the absolute easiest way to do
it would be to distribute the matrixA by rows, haveB replicated everywhere, and then haveC by
rows. If we distributed our matrices this way in the first place, everything is simple:

7



CSIS 400 Parallel Processing Fall 2008

See:/cluster/examples/matmult mpi toosimple

This program has very little MPI communication – this is by design, as we distributed our matrices
so that each process would have exactly what it needs.

Unfortunately, this is not likely to be especially useful. More likely, we will want all three matrices
distributed the same way.

To make the situation more realistic, but still straightforward, let’s assume that our initial matrices
A andB are distributed by rows, in the same fashion as the Life simulator. Further, the result matrix
C is also to be distributed by rows.

The process that owns each row will do the computation for that row. What information does each
process have locally? What information will it need to request from other processes?

Matrix multiplication is a pretty “dense” operation, and weto send all the columns ofB to all
processes.

See:/cluster/examples/matmult mpi simple

Note that we only initialize rows ofB on one process, but since it’s all needed on every process,
we need to broadcast those rows.

Can we do better? Can we get away without storing all ofB on each process? We know we need
to send it, but we we do all the computation that needs each rowbefore continuing on to the next?

See:/cluster/examples/matmult mpi better

Yes, all we had to do was rearrange the loops that do the actualcomputation of the entries ofC.
We can broadcast each row, use it for everything it needs to beused for, then we move on. We save
memory!

Even though we do the exact same amount of communication, ourmemory usage per process goes
from O(n2) to O(n

2

p
).

8


