Computer Science 400

Parallel Processing
Siena College

SIENAcollege Fall 2008

Topic Notes: Message Passing Interface (MPI)
The Message Passing Interface (MPI) was created by a stendammittee in the early 1990’s.

e motivated by the lack of a good standard

— everyone had their own library
— PVM demonstrated that a portable library was feasible
— portablity and efficiency were conflicting goals

e The MPI-1 standard was released in 1994, and many impletmamggfree and proprietary)
have since become available

e MPI specifies C and Fortran interfaces (125 functions in taadard), more recently C++
as well

e parallelism is explicit - the programmer must identify geeigsm and implement a parallel
algorithm using MPI constructs

e MPI-2 is an extention to the standard developed later in §89% and there are now some
implementations

MPI Terminology

¢ Rank — a unique identifier for a process

— values are 0n. — 1 whenn processes are used
— specify source and destination of messages
— used to control conditional execution

e Group — a set of processes, associated witloramunicator

— processes in a group can take part in a collective commumigdbr example

— we often use the predefined communicator specifying thepyodall processors in a
communicationiVPl _COVMWORLD

— the communicator ensures safe communication within a graywid potential con-
flicts with other messages

CSIS 400 Parallel Processing Fall 2008

e Application Buffer - application space containing data to send or received data

e System Buffer - system space used to hold pending messages

Major MPI Functions

MPI1 Simple Program - basic MPI functions
We begin with a simple “Hello, World” program.
See:/ cl uster/ exanpl es/ npi hel |l o

MPI calls and constructs in the “Hello, World” program:

e #i ncl ude <npi . h>-the standard MPI header file

e WPl Init(int =argc, char =*argv[]) - MPI Initialization

e MPI _COVMWORLD - the global communicator. Use fdPl _Conmmargs in most situations
e MPI _Abort (MPlI _Comm comm i nt rc) - MPI Abort function 3

e MPI _Commsi ze(MPlI _Conm conmm i nt *nunprocs) -returns the number of pro-
cesses in a given communicatomonpr ocs

e MPI _Commr ank(MPlI _Comm comm i nt =*pid) -returns the rank of the current pro-
cess in the given communicator

e MPI Cet processor _nanme(char *name, int =*rc) -returnsthe name of the node
on which the current process is running

e MPI Finalize() -cleanup MPI

The model of parallelism is very different from what we haeers. All of our processes exist
for the life of the program. We are not allowed to do anythirgfoloe MPI _I ni t () or after
MPI _Fi nal i ze(). We need to think in terms of a number of copies of same program all
startingup atvPl I nit ().

To run, compile withpi cc, run with npi r un according to the instructions on the course web
page.
MPI Point-to-Point message functions

There are just a few that we’ll use frequently:

e MPI _Send/ MPI _Recv - standard blocking calls (may have system buffer)

e MPI I send/ MPI I r ecv - standard nonblocking calls

CSIS 400 Parallel Processing Fall 2008

e wait calls for nonblocking communication8Pl Wait, MPI Maitall, Ml _Vait-
some, MPlI Wi tany

And there are many variations that we won't likely use much:

e MPI _Ssend/ MPI _I ssend - synchronous blocking/nonblocking send

e VPl Bsend/ MPI _|I bsend - buffered blocking/nonblocking send - programmer allesat
message buffer witMPl _Buf f er _att ach

e VPl Rsend/ MPI _I r send - ready mode send - matching receivast have been posted
previously

e MPI _Sendr ecv - combine send/recv into one call before blocking

e also:\MPl _Pr obe andMPI _Test calls

Blocking Point-to-point Communication
A simple MPI program that sends a single message using llgdammunication:

See:/ cl ust er/ exanpl es/ npi nsg

e All MPI calls return a status value, and it's a good idea tooghieas is done in this example
for theVPI _I ni t call.

— Most class examples will not be thorough in this to keep thilegking simpler.

— For our purposes, any MPI error will cause the program to iteate with an error
message, so it usually is not that important to us.

— When developing large-scale software, we often wish to meturor codes rather than
crash the whole program, so error checking becomes moreriamiahere.

— The error checking includes a messy little chunk of code tat jput appropriate mes-
sages, so it's probably worth putting this into your own ergporting function if you
want to use it.

e VPl _St at us st at us - structure which contains additional info following a reee We
often ignore it, but we will see some instances where it comésandy.

e MPI Send(void *buf, int count, MPI Datatype type, int dest, int
tag, MPI _Comm comm) - blocking send - does not return until the correspondingixec
is completed. sendsount copies of data of typéype located inbuf to the processor
with pid dest .

e WPl Recv(void *buf, int count, MPI Datatype type, int src, int
tag, MPI _Conm comm MPI _Status status) - blocking receive - does not return
until the message has been receivgdc may be specific PID avPl _ANY_SOURCE which
matches, well, a message from any source.

3

CSIS 400 Parallel Processing Fall 2008

e MPI _Dat at ype examplesMPl _CHAR, MPI _I NT, MPI _LONG, WMPI _FLOAT, MPI _-
DOUBLE, MPI _BYTE, MPI _PACKED

Non-blocking Point-to-point Communication

A slightly more interesting MPI program that sends one mgsgeom each process with non-
blocking messages:

See:/ cl ust er/ exanpl es/ npi ri ng

e MPI Request request - structure which contains info needed by nonblocking dalls
check on their status or to wait for their completion.

e WPl |Isend(void =buf, int count, Ml Datatype type, int dest, int
tag, MPI _Conm comm MPlI _Request =*req) - nonblocking send - returns immedi-
ately. buf must not be modified until a wait function is called using tiEquest.

e WPl Irecv(void =buf, int count, Ml Datatype type, int source,
int tag, MPI _Comm conm MPlI _Request =*req) - nonblocking receive - returns
immediately.buf must not be used until a wait function is called using thisiesq.

e MPI Wit (Ml Request =*req, MPI _Status *status) -waitfor completion of
message which hadeq as its request argument. Additional info such as source dssage
received ad/Pl _ANY_SCOURCE is contained irst at us.

TheMPI _ANY_SOURCE option is used in this modified version of the example:
See:/ cl ust er/ exanpl es/ npi ri ng_anysour ce

Collective Communication

We often need to perform operations at a higher level thaplsisends and receives.

See:/ cl ust er/ exanpl es/ npi col |

e VPl Barrier (Ml _Comm comm -synchronize procs

e WPl Bcast (void *buf,int count, VPl Datatype type,int root, MPl _Conm
comm) - broadcast - senasount copies of data of typey pe located inbuf on procr oot
to buf on all others.

e MPI Reduce(voi d *sendbuf, void *recvbuf,int count, MPI _Datatype
type, MPl _Op op,int root, MPl _Conm comm) - combines data irsendbuf on
each proc using operatiarp and stores the result mecvbuf on procr oot

e WPl Al l reduce() -same as reduce except result is storedénvbuf on all procs

e MPI _Opvalues Pl _MAX, MPI _M N, MPI _SUM MPI PRCD, MPI LAND, MPI _BAND,
MPI _LOR, MPI _BOR, MPI _LXOR, MPI _BXOR, MPI _MAXLOC, MPI _M NLOCplus user-
defined

CSIS 400 Parallel Processing Fall 2008

e MPI Scan(void *sendbuf, void *recvbuf, int count, MPI _Datatype
type, MPI _Op op, MPI _Comm conm) - parallel prefix scan operations

Scatter/Gather — Higher-level Collective Communication

See:/ cl ust er/ exanpl es/ npi scat gat h

e WPl Scatter(void *sendbuf, int sendcount, MPI _Datatype sendtype,
void *recvbuf, int recvcount, Ml Datatype recvtype, int root,
MPI _Comm conm) -r oot sendssendcount items fromsendbuf to each processor.
Each processor receivegcvcount items intor ecvbuf

e MPI _Gat her (voi d *sendbuf, int sendcount, MPI _Datatype sendtype,
void *recvbuf, int recvcount, Ml _Datatype recvtype, int root,
MPI _Comm conmm) - each proc sendsendcount items fromsendbuf tor oot . r oot
receives ecvcount items intor ecvbuf from each proc

e VPl Scatterv/ MPl _Gat her v work with variable-sized chunks of data
e MPI _Al | gat her/ MPI _Al'l t oal | variations of scatter/gather

To understand what is going on with the various broadcastsaatter/gather functions, consider
this figure, taken from the MPI Standard, p.91

CSIS 400 Parallel Processing Fall 2008

datg ——=
?, Ag Ag
g Ao
a broadeast
o
5 : A
0
Ag
Ag
Aglagas]as] A,] As scatter Ag
—> o
Aa
gather A
3
< : Ay
Ag
A Ao BolCo|Po|Fo| o
By Ag|Bo| Co|Do| Eo| Fo
allgather
Cq g Ag|Bg|CqlDg| Eq| Fo
By |:> A0|B0| 0|0/ Bo| Fo
o A0]Bo| S0/ o|Bo| Fo
Fo Ao BolCo|Po|Fo| Fo
Al Ay ay]as] A, Ag agl ol col oyl Egl Fp
BB, |B,|B.|B,|B a,|e,|c, o, |E |F
o] B1]|B2|Ba|By| Bs alitoall 1B G Py B Py
€yl Syl | CalCulCs A CACA AN
CAEAERENEAEE AN EAEN N
Eo| Eq|Es| Ea| Byl Es AACACA AL
FolF1|Fz| P3| Fe|Fs Ag|Bs5|C5| 5| Fs| Fs

Sample MPI Applications
Conway’s Game of Life

The Game of Life was invented by John Conway in 1970. The gampkay®d on a field of cells,
each of which has eight neighbors (adjacent cells). A cdlitiser occupied (by an organism) or
not. The rules for deriving a generation from the previous are:

e Death: If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupiedhimrs, it dies (of either
boredom or overcrowding, as the case may be)

e Survival: If an occupied cell has 2 or 3 occupied neighbadigjiivives to the next generation

e Birth: If an unoccupied cell has 3 occupied neighbors, it Inee® occupied.

The game is very interesting in that complex patterns antésyarise. Do a google search to find
plenty of Java applets you can try out.

| like the one here:

CSIS 400 Parallel Processing Fall 2008

http://ww. mat h. com student s/ wonders/life/life.htm

My implementation is not graphical, so it’s a lot less funplays the game, but only computes
statistics.

Serial versionSee:/ cl ust er/ exanpl es/life

MPI version:See:/ cl uster/ exanpl es/npilife

e Since our memory is not shared, we only allocate enough mepmeach process to hold
the rows that will be computed by that process, plus a “ghast’ on each side that will
allow simple computation of our rows.

¢ When we need to get a global count of some statistic, such asothd of live cells at the
start, we use a reduction.

e The communication is done with two pairs of sends and reseilere, we use nonblocking
calls, then wait for their completion with the waitall call.

Matrix-Matrix Multiplication

Matrix-matrix multiplication using message passing is aetstraightforward as matrix-matrix
multiplication using shared memory and threads. Why?

e Since our memory is not shared, which processes have cdiiies matrices?
e Where does the data start out? Where do we want the answer taHeeend?
e How much data do we replicate?

e What are appropriate MPI calls to make all this happen?

The MPI version of Conway’s Game of Life used a distributechdditucture. Each process main-
tains its own subset of the computational domain, in thi® ¢ast a number of rows of the grid.

Other processes do not know about the data on a given proOedg that data that is needed to
compute the next generation, a one-cell overlap, is exathbgtween iterations.

Think about that — no individual process has all of the infation about the computation. It only
works because all processes are cooperating.

The “slice by slice” method of distributing the grid was cho®nly for its simplicity of implemen-
tation, both in the determination of what processes arengivieat rows, and the straightforward
communication patterns that can be used to exchange bguddt. We could partition in more
complicated patterns, but there would be extra work invalve

The possiblities for the matrix-matrix multiply are numeso Now the absolute easiest way to do
it would be to distribute the matriA by rows, haveB replicated everywhere, and then h&avey
rows. If we distributed our matrices this way in the first @aeverything is simple:

CSIS 400 Parallel Processing Fall 2008

See:/ cl ust er/ exanpl es/ mat nul t _npi _t oosi npl e

This program has very little MP1 communication — this is bgiga, as we distributed our matrices
so that each process would have exactly what it needs.

Unfortunately, this is not likely to be especially usefuloid likely, we will want all three matrices
distributed the same way.

To make the situation more realistic, but still straightfard, let's assume that our initial matrices
AandB are distributed by rows, in the same fashion as the Life satoul Further, the result matrix
Cis also to be distributed by rows.

The process that owns each row will do the computation fdrrthva What information does each
process have locally? What information will it need to requesn other processes?

Matrix multiplication is a pretty “dense” operation, and wesend all the columns @ to all
processes.

See:/ cl ust er/ exanpl es/ mat nul t _npi _si npl e

Note that we only initialize rows 0B on one process, but since it's all needed on every process,
we need to broadcast those rows.

Can we do better? Can we get away without storing aB oh each process? We know we need
to send it, but we we do all the computation that needs eaclibedare continuing on to the next?

See:/ cl uster/ exanpl es/ mat nul t _npi _better

Yes, all we had to do was rearrange the loops that do the abugbutation of the entries .
We can broadcast each row, use it for everything it needs tséeé for, then we move on. We save
memory!

Even though we do the exact same amount of communicatiomenrory usage per process goes
from O(n?) to O(%).

