
Computer Science 385
Design and Analysis of Algorithms
Siena University
Spring 2026

Problem Set 1
Group Formation: 4:00 PM, Friday, January 30, 2026

Due: 4:00 PM, Wednesday, February 4, 2026

You may work alone or in a group of size 2 or 3 on this assignment. However, in order to make sure
you learn the material and are well-prepared for the exams, you should work through the problems
on your own before discussing them with your partner(s), should you choose to work with others.
In particular, the “you do these and I’ll do these” approach is sure to leave you unprepared for the
exams.

There is a substantial amount of work to be done here, and you are sure to have questions. It will
be difficult if not impossible to complete the assignment if you wait until the last minute. A slow
and steady approach will be much more effective.

Submitting
Please submit a hard copy (typeset preferred, handwritten OK but must be legible) for all written
questions. Only one submission per group is needed.

Written Questions: Discrete Math and Data Structures
Question 1: Indicate and briefly justify (in words, not mathematically) the “Big O” complexity
for each of the operations below. Differentiate among best, average, and worst cases and specify
under what circumstances they occur, where relevant. Specify the basic operation you are counting
in each case. You may use any trustworthy resource, but any such resource must be cited. Be sure
you understand any answers you need to look up, as you will see some of these or very similar
questions as quiz or exam questions soon. (16 points)

For example, if the operation is “Find the largest value in an unsorted array of n integers”, your
response could be:

The basic operation is an integer comparison. Since the array is unsorted, there is no way to find
the largest until you have compared with every one of the n values, so the best, average, and worst
cases are all O(n).

• Perform a binary search in a sorted array of n integers.

• Add an element to an ArrayList that contains n values, using the default add method
(which would add at the end).

• Add an element to a singly-linked list that contains n values using the most efficient possible
add method (which would add at the head).

CSIS 385 Design and Analysis of Algorithms Spring 2026

• Add an element to a sorted ArrayList that contains n integers, and which has capacity
available to store the new value.

• Sort an array of n integers using bubble sort (with the implementation we have seen in class
and lab).

• Determine if a key exists in a binary search tree that contains n keys.

• Determine if a specific value is currently stored in a sorted array of n integers.

• And one that you might not have seen, but should be able to reason out: count the number
of times a specific value occurs in a sorted array of n integers.

As we do more and more analysis of algorithms, we will encounter mathematical results in various
forms, with logs, exponents, square roots, that represent familiar values expressed in unusual ways.
It is helpful to be aware when different mathematical expressions represent the same value. For
example, n and

√
n2 are equivalent.

Question 2: For the expressions below, group them into sets of equivalent expressions. For loga-
rithms, lg indicates base 2, and otherwise the base of the log will be indicated with a subscript. (14
points)

lg a+ lg b n2 lg(2n+1) 8lgn (2n)n 2lgn

nlg 8 lg(2n) n 3 2n+n 2

4lgn 1 log10 n
log10 2

4(2n) lg 2 lg(2n)

(2n)2 2n+2 n3 4 2n+1 lg(ab)

log10 n n 2n2n lg n lg(a/b) lg a− lg b

4n n+ 1 2n+2 n lg 2 n lg n lg 16

2(2n) nlg 16 2n+1 lg n 22n

Written Questions: Summations and Counting
Question 3: Compute closed forms the following sums. Show your work. No credit if intermediate
steps are not shown. Remember page 476 of your textbook! (16 points)

8∑
i=1

(4n+ 2i+ 7)

2

CSIS 385 Design and Analysis of Algorithms Spring 2026

n−1∑
i=0

(4n+ 2i+ 7)

n∑
i=0

2i · n

n∑
i=0

2i+3

For the next 5 questions, refer to this Java code fragment:

for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {

for (k = 1; k <= j; k++) {
System.out.println("Hello!");
System.out.println("Hello!");

}
}

}

Question 4: How many times will this print Hello! when n=2? (1 point)

Question 5: How many times will this print Hello! when n=3? (1 point)

Question 6: Write an expression involving three summations that counts the number of times it
prints Hello! in terms of n. There should be one summation for each loop. (3 points)

Question 7: Simplify your expression from the previous question to get a closed form. Show all
work. (3 points)

Question 8: Substitute n=2 and n=3 in your expression (show your work for this, even if it seems
trivial) to see if the answers match what you counted above. (1 point)

Written Questions on Graph Representations
For the questions below, consider the graph representations discussed in class for storing directed
graphs.

Suppose that the amount of memory required by the adjacency matrix graph representation is
exactly |V |2

8
bytes1, and that the exact amount of memory required by the adjacency list graph

representation is exactly 32|V |+ 32|E| bytes2.

1This assumes each Boolean value in the array is stored as a single bit.
2This assumes 8 bytes for each reference in the vertices[] array, 24 bytes for each Vertex object (8 bytes

for the head reference plus 16 bytes needed by Java to store housekeeping information about each Vertex object),
and 32 bytes per Edge object (8 bytes for the integer dest, 8 bytes for the next reference, and 16 bytes to store Java
housekeeping information about each Edge object).

3

CSIS 385 Design and Analysis of Algorithms Spring 2026

Question 9: If you have a graph with 221 (just over 2,000,000) vertices and each vertex has 4
outgoing edges, exactly how much memory in gigabytes is needed to store the graph using each
representation? For each representation, can it fit into the 32GB of main memory which you might
find in a PC today? (4 points)

Question 10: Graphs that have only a few number of edges per vertex are known as sparse graphs.
A graph with a high number of edges per vertex is said to be dense. Suppose you have a complete
directed graph of 221 vertices. Here every vertex has a directed edge to all the other vertices. This
is the “densest” graph there is! Exactly how much memory is needed to store the graph using each
representation? Express your answer in gigabytes. (5 points)

Question 11: For a graph with 221 vertices, where is the “break even” point, measured by |E|,
below which the adjacency list representation is more memory efficient, and above which the
adjacency matrix representation is more efficient? (5 points)

Question 12: What is the average vertex out-degree corresponding to your answer from the previ-
ous question? (3 points)

Written Questions: Populating Arrays for Empirical Studies
In future problem sets, you will be asked to perform empirical analyses on the sorting algorithms
we will be studying. In order to test the best, worst, and average cases of some of these algorithms,
you will need to fill arrays with values with various characteristics. For simplicity, we will work
with arrays of integers.

We will not be coding them yet for this problem set, but let’s think about how this could be done.
For the questions in this section, describe how you would generate a set of n integer values to store
in an array that has each of the following characteristics.

Question 13: Random values within a given range. When you write this later as a method, the
upper and lower bounds of the range of values will be given as parameters. (3 points)

Question 14: Values already sorted in ascending order. Note: it is important that you generate
these efficiently – for example, you should not generate sorted input by generating random input
then sorting it. Generate it in sorted order right from the start. Be sure to have at least some
randomness to the values generated. (4 points)

Question 15: Values already sorted in descending order. Again, make sure you do this efficiently
and have some randomness. (2 points)

Question 16: Values “nearly” sorted in ascending order. Here, when you write this as a method
later, it will take a parameter that specifies the fraction of entries that are out of order. For example,
if the parameter has a value of 0.05, approximately one of out of each 20 array slots should contain
a value that’s out of order. There are many reasonable ways to accomplish this. (4 points)

4

CSIS 385 Design and Analysis of Algorithms Spring 2026

Grading
This assignment will be graded out of 85 points.

Feature Value Score
Q1 16
Q2 14
Q3 16
Q4 1
Q5 1
Q6 3
Q7 3
Q8 1
Q9 4
Q10 5
Q11 5
Q12 3
Q13 3
Q14 4
Q15 2
Q16 4
Total 85

5

