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Topic Notes: Analysis Fundamentals

We will next review and greatly expand upon some of what you know from some of your previous
courses about measuring efficiency.

You have studied the “extensible array” abstract data type, known in Java as the Vector or
ArrayList. This structure affords us a meaningful opportunity to look at important efficiency
issues before moving on to more complicated and interesting structures and the algorithms that use
them.

Consider these observations:

• A programmer can use an ArrayList in contexts where an array could be used.

• The ArrayList hides some of the complexity associated with inserting or removing values
from the middle of the array, or when the array needs to be resized.

• As a user of an ArrayList, these potentially expensive operations all seem very simple –
it’s just a method call.

• But.. programmers who make use of abstract data types need to be aware of the actual costs
of the operations and their effect on their program’s efficiency.

We will now spend some time looking at how Computer Scientists measure the costs associated
with our structures and the operations on those structures.

Costs of ArrayList Operations
In class, we will build a table of the key operations of the ArrayList ADT and how expensive
each is. We will formalize the idea soon, but to start, we will just consider how many array accesses
are needed, which is usually highly dependent on the number of times the loops need to iterate to
complete the operation’s functionality.

• add (which by default in an ArrayList adds at the end)

• add at a position (consider 0 as an important special case)

• remove from a position (consider removing the first or last as important special cases)

• get/set
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• contains/indexOf (consider unsuccessful searches and successful searches that find the
value at the beginning, at a position somewhere in the middle, or at the last position)

• isEmpty

• size

• clear

It is also very important to consider that the add operations sometimes are called on an ArrayList
that is already full, meaning the ensureCapacity operation will need to make the internal array
of the ArrayList larger before adding the new element.

The default behavior, both in Java’s ArrayList and in the version we worked with in lab, is to
double the size of the internal array each time it needs to grow.

You might have some concern that this potentially wastes a lot of space. It means that an ArrayList
to which we add n elements would have an internal array with a size somewhere between n and
2n.

Another option would be to grow the array by 1 each time it needs to grow, eliminating any unused
slots.

So let’s consider those options, and for to keep the math manageable, we will assume that our
ArrayList starts with a capacity of 1 and that we are adding n elements with the default add
operation (adding to the end), where n is a power of 2.

For the case where we increase the capacity by 1, we need to grow the internal array on every step.
For the kth add, we would need to allocate a new array of size k and copy over the k − 1 elements
from the old array on every step.

This will require about n2

2
copy operations:

0 + 1 + 2 + 3 + 4 + ...+ n = n ∗ n− 1

2

If we double the array size, many of our add operations will not need any copies at all - they have
available space to drop into. Our total number of elements to copy will be

0 + 1 + 2 + 4 + 8 + ...+
n

2
= n− 1

Copying about n elements is much less painful than copying n2

2
.

Of course, no copies would need to be made if we just allocated space for n elements at beginning
(a good idea, if you know n ahead of time, but if you did, you might just be using an array...).

These kinds of differences relate to the tradeoffs made when developing algorithms and data struc-
tures. We could avoid all of these copies by just allocating a huge array, larger than we could ever
possibly need, right at the start. That would be very efficient in terms of avoiding the work of
copying the contents of the array, but it is very inefficient in terms of memory usage.
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This is an example of a time vs. space tradeoff . We can save some time (do less computing) by
using more space (less memory). Or vice versa.

We also observe that the cost to add an element to an ArrayList is not constant! Usually it is –
when the ArrayList is already big enough – but in those cases where the ArrayList has to be
expanded, it involves copying over all of the elements already in the ArrayList before adding
the new one. This cost will depend on the number of elements in the ArrayList at the time.

The cost of inserting or removing an element from the middle or beginning of an ArrayList
always depends on how many elements are in the ArrayList after the insert/remove point.

Asymptotic Analysis
We want to focus on how Computer Scientists think about the differences among the costs of
various operations.

There are many ways that we can think about the “cost” of a particular computation. The most
important of which are

• computational cost: how many basic operations of some kind does it take to accomplish
what we are trying to do?

– If we are copying the elements of one array to another, we might count the number of
elements we need to copy.

– In other examples, we may wish to count the number of times a key operation, such as
a multiplication statement, takes place.

– We can estimate running time for a problem of size n, T (n), by multiplying the execu-
tion time of our basic operation, cop, by the number of basic operations, C(n):

T (n) ≈ copC(n)

• space cost: how much memory do we need to use?

– may be the number of bytes, words, or some unit of data stored in a structure

The operations we’ll want to count tend to be those that happen inside of loops, or more signifi-
cantly, inside of nested loops.

Finding the “Trends”
Determining an exact count of operations might be useful in some circumstances, but we usually
want to look at the trends of the operation costs as we deal with larger and larger problem sizes.

This allows us to compare algorithms or structures in a general but very meaningful way without
looking at the relatively insignificant details of an implementation or worrying about characteristics
of the machine we wish to run on.
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To do this, we ignore differences in the counts which are constant and look at an overall trend as
the size of the problem is increased.

For example, we’ll treat n and n
2

as being essentially the same.

Similarly, 1
1000

n2, 2n2 and 1000n2 are all “pretty much” n2.

With more complex expressions, we also say that only the most significant term (the one with the
largest exponent) is important when we have different parts of the computation taking different
amounts of work or space. So if an algorithm uses n + n2 operations, as n gets large, the n2 term
dominates and we ignore the n.

In general if we have a polynomial of the form a0n
k + a1n

k−1 + ... + ak, say it is “pretty much”
nk. We only consider the most significant term.

Defining “Big O” Formally
We formalize this idea of “pretty much” using asymptotic analysis:

Definition: A function f(n) ∈ O(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≤ c · g(n) for all n > n0.

Equivalently, we can say that f(n) ∈ O(g(n)) if there is a constant c such that for all sufficiently
large n, |f(n)

g(n)
| ≤ c.

To satisfy these definitions, we can always choose a really huge g(n), perhaps nnn , but as a rule,
we want a g(n) without any constant factor, and as “small” of a function as we can.

So if both g(n) = n and g(n) = n2 are valid choices, we choose g(n) = n. We can think of
g(n) as an upper bound (within a constant factor) in the long-term behavior of f(n), and in this
example, n is a “tighter bound” than n2.

We also don’t care how big the constant is and how big n0 has to be. Well, at least not when
determining the complexity. We would care about those in specific cases when it comes to imple-
mentation or choosing among existing implementations, where we may know that n is not going
to be very large in practice, or when c has to be huge. But for our theoretical analysis, we don’t
care. We’re interested in relative rates of growth of functions.

Common Orders of Growth
The most common orders of growth or orders of complexity are

• O(1) – for any constant-time operations, such as the assignment of an element in an array.
The cost doesn’t depend on the size of the array or the position we’re setting.

• O(log n) – logarithmic factors tend to come into play in “divide and conquer” algorithms.
Example: binary search in an ordered array of n elements.

• O(n) – linear dependence on the size. This is very common, and examples include the
insertion of a new element at the beginning of an array containing n elements.
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• O(n log n) – this is just a little bigger than O(n), but definitely bigger. The most famous
examples are divide and conquer sorting algorithms, which we will look at soon.

• O(n2) – quadratic. Most naive sorting algorithms are O(n2). Doubly-nested loops often
lead to this behavior. Example: matrix-matrix addition for n× n matrices.

• O(n3) – cubic complexity. Triply nested loops will lead to this behavior. A good example is
“naive” matrix-matrix multiplication. We need to do n operations (a dot product) on each of
n2 matrix entries.

• O(nk), for constant k – polynomial complexity. As k grows, the cost of these kinds of
algorithms grows very quickly.

Computer Scientists are actually very excited to find polynomial time algorithms for seem-
ingly very difficult problems. In fact, there is a whole class of problems (NP) for which if
you could either come up with a polynomial time algorithm, no matter how big k is (as long
as it’s constant), or if you could prove that no such algorithm exists, you would instantly be
world famous! At least among us Computer Scientists. We will likely introduce the idea of
NP and NP-Completeness near the end of Analysis of Algorithms.

• O(2n) – exponential complexity. Recursive solutions where we are searching for some “best
possible” solution often leads to an exponential algorithm. Constructing a “power set” from
a set of n elements requires O(2n) work. Checking topological equivalence of circuits is one
example of a problem with exponential complexity.

• O(n!) – factorial complexity. This gets pretty huge very quickly. We are already considering
one example on the first problem set: traversing all permutations of an n-element set.

• O(nn) – even more huge

Suppose we have operations with time complexity O(log n), O(n), O(n log n), O(n2), and O(2n).

And suppose the time to solve a problem of size n is t. How much time to do problem 10, 100, or
1000 times larger?

Time to Solve Problem
size n 10n 100n 1000n

O(1) t t t t
O(log n) t > 3t ∼ 6.5t < 10t
O(n) t 10t 100t 1, 000t
O(n log n) t > 30t ∼ 650t < 10, 000t
O(n2) t 100t 10, 000t 1, 000, 000t
O(2n) t ∼ t10 ∼ t100 ∼ t1000

Note that the last line depends on the fact that the constant is 1, otherwise the times are somewhat
different.

Examples
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• Filling in a difference table, addition table, multiplication table, etc., O(n2)

• Inserting n elements into an ArrayList using default add, O(n)

• Inserting n elements into an ArrayList using add at position 0, O(n2)

As we saw with our ArrayList operations, some ADT operations or algorithms will have vary-
ing complexities depending on the specific input. So we can consider three types of analysis:

• Best case: how fast can an instance be if we get really lucky?

– find an item in the first place we look in a search – O(1)

– get presented with already-sorted input in certain sorting procedures – O(n)

– we don’t have to expand an ArrayList when adding an element at the end – O(1)

• Worst case: how slow can an instance be if we get really unlucky?

– find an item in the last place in a linear search – O(n)

– get presented with a reverse-sorted input in certain sorting procedures – O(n2)

– we have to expand an ArrayList to add an element – O(n)

• Average case: how will we do on average?

– linear search – equal chance to find it at each spot or not at all – O(n)

– get presented with reasonably random input to certain sorting procedures – O(n log n)

– we have to expand an ArrayList sometimes, complexity depends on how we resize
and the pattern of additions

Important note: this is not the average of the best and worst cases!

Basic Efficiency Classes
Big O is only one of three asymptotic notations we will use.

Informally, the three can be thought of as follows:

• O(g(n)) is set of all functions that grow at the same rate as or slower than g(n).

• Ω(g(n)) is set of all functions that grow at the same rate as or faster than g(n).

• Θ(g(n)) is set of all functions that grow at the same rate as g(n).
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We previously gave the formal definition of O(g(n)):

Definition: A function f(n) ∈ O(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≤ c · g(n) for all n > n0.

Now, let’s see/remember how we can use this definition to prove that a function is in a particular
efficiency class.

Let’s show that
500n+ 97 ∈ O(n2)

by finding appropriate constants c and n0 to match the definition.

Since all we need to do is to produce any pair of constants to meet the requirement, we have a
great deal of freedom in selecting our constants. We could select very large constants that would
satisfy the definition. But we will attempt to obtain some fairly small (“tight”) constants.

Note that
500n+ 97 ≤ 500n+ n

for n ≥ 97. And
500n+ n = 501n ≤ 501n2

indicating that we can use c = 501.

So, c = 501 and n0 = 97 will work.

Alternately, we could notice that

500n+ 97 ≤ 500n+ 97n

for n ≥ 1. And
500n+ 97n = 597n ≤ 597n2

indicating a value of c = 597 to go with n0 = 1.

Similar arguments work for other polynomials (which we do on our handouts).

Next, we consider the formal definitions of Ω and Θ.

Definition: A function f(n) ∈ Ω(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≥ c · g(n) for all n > n0.

Definition: A function f(n) ∈ Θ(g(n)) if and only if there exist three positive constants c1, c2, and
n0 such that c2 · g(n) ≤ |f(n)| ≤ c1 · g(n) for all n > n0.

Similar techniques can be used to prove membership of a function in these classes (in our handout).

To show that 15n2 + 37 ∈ Ω(n), we need to show a lower bound instead of an upper bound as
we did for Big-O proofs. So instead of making our function larger to help make progress, we can
make our function smaller. We will work through this on the handout.

Some Useful Properties
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As we work with these asympotic notations, the following properties will often prove useful. We
will not prove them formally, but convince yourself that these hold (and use them as needed!).

• f(n) ∈ O(f(n))

• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

• If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n))

• If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Using Limits
A powerful means of comparing the orders of growth of functions involves the use of limits. In
particular, we can compare functions f(n) and g(n) by computing the limit of their ratio:

lim
n→∞

f(n)

g(n)

Three cases commonly arise:

• 0: f(n) has a smaller order of growth than g(n), i.e., f(n) ∈ O(g(n)).

• c > 0: f(n) has the same order of growth as g(n), i.e., f(n) ∈ Θ(g(n)).

• ∞: f(n) has a larger order of growth than g(n), i.e., f(n) ∈ Ω(g(n)).

Two rules that can come in handy when using this technique:

L’Hôpital’s rule states

lim
n→∞

t(n)

g(n)
= lim

n→∞

t′(n)

g′(n)

and Stirling’s formula states

n! ≈
√
2πn

(n
e

)n

for large values of n.

We will use L’Hôpital’s rule pretty frequently, but not Stirling’s formula.

We will consider some examples on the handout.

Analyzing Nonrecursive Algorithms
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We will next look at how to analyze non-recursive algorithms.

Our general approach involves these steps:

1. Determine the parameter that indicates the input size, n.

2. Identify the basic operation.

3. Determine the worst, average, and best cases for inputs of size n.

4. Specify a sum for the number of basic operation executions.

5. Simplify the sum

We will work through a few examples with our handout.
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