
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Warshall’s and Floyd’s Algorithms

Warshall’s Algorithm
Computes the transitive closure of a digraph.

Can find the transitive closure by building a spanning tree from each vertex (with
something like BFT or DFT). If it costs up to Θ(|V |2) to build each spanning tree
we end up with a cost of

Warshall’s approach:
ALGORITHM WARSHALL(A)

//Input: A[1..n][1..n] an adjacency matrix representation of a graph
// where A[i][j] is true iff a edge exists from i to j
// Each R(i)[1..n][1..n] is an iteration toward the closure
R(0) ← A
for k ← 1..n do

for i← 1..n do
for j ← 1..n do

R(k)[i][j]← R(k−1)[i][j] or (R(k−1)[i][k] and R(k−1)[k][j])

return R(n)

Efficiency:

CSIS 385 Design and Analysis of Algorithms Spring 2025

Example of Warshall’s Algorithm:

2

CSIS 385 Design and Analysis of Algorithms Spring 2025

Floyd’s Algorithm
A pretty straightforward extension of Warshall’s Algorithm can be used to solve
the all sources shortest path problem.

ALGORITHM FLOYD(W)
//Input: W [1..n][1..n] an adjacency matrix representation of graph edge weights
// nonexistent edges have a weight of∞
D ← W // a matrix copy
for k ← 1..n do

for i← 1..n do
for j ← 1..n do

D[i][j]← min(D[i][j], D[i][k] +D[k][j])

return D

Exercise 8.4.7

3

