

Computer Science 385 Design and Analysis of Algorithms Siena College Spring 2025

Warshall's and Floyd's Algorithms

Warshall's Algorithm

Computes the *transitive closure* of a digraph.

Can find the transitive closure by building a spanning tree from each vertex (with something like BFT or DFT). If it costs up to $\Theta(|V|^2)$ to build each spanning tree we end up with a cost of

```
Warshall's approach:

ALGORITHM WARSHALL(A)

//Input: A[1..n][1..n] an adjacency matrix representation of a graph

// where A[i][j] is true iff a edge exists from i to j

// Each R^{(i)}[1..n][1..n] is an iteration toward the closure

R^{(0)} \leftarrow A

for k \leftarrow 1..n do

for i \leftarrow 1..n do

for j \leftarrow 1..n do

R^{(k)}[i][j] \leftarrow R^{(k-1)}[i][j] or (R^{(k-1)}[i][k] and R^{(k-1)}[k][j])

return R^{(n)}
```

Efficiency:

Example of Warshall's Algorithm:

Floyd's Algorithm

A pretty straightforward extension of Warshall's Algorithm can be used to solve the *all sources shortest path* problem.

ALGORITHM FLOYD(W)

//Input: W[1..n][1..n] an adjacency matrix representation of graph edge weights // nonexistent edges have a weight of ∞ $D \leftarrow W$ // a matrix copy for $k \leftarrow 1..n$ do for $i \leftarrow 1..n$ do for $j \leftarrow 1..n$ do $D[i][j] \leftarrow min(D[i][j], D[i][k] + D[k][j])$

return D

Exercise 8.4.7

0	2	∞	1	8]
6	0	3	2	∞
∞	∞	0	4	∞
∞	∞	2	0	3
3	∞	∞	∞	0