
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Quicksort Practice

Basic Idea

5 3 7 1 2 4 6 8

CSIS 385 Design and Analysis of Algorithms Spring 2025

Let’s carefully trace the PARTITION algorithm on the last page of
this packet for this array.

lt

rt

p

i

j

31 8 2 5 40 1 50 71 85 4 70 60 15 90 45 55

Assuming element comparisons as the basic operation, what is the
time complexity of PARTITION on an n-element array?

Θ()

Given what you see in the PARTITION algorithm, does it look like
QUICKSORT is a stable sorting algorithm?

2

CSIS 385 Design and Analysis of Algorithms Spring 2025

What is the role of the pivot element in QUICKSORT?

What is the best case for a pivot element?

State a recurrence for the number of element comparisons made by
all calls to PARTITION for an instance of QUICKSORT for which
every pivot results in best case behavior.

Cbest(n) =

By the Master Theorem, Cbest(n) ∈ Θ()

What is the worst case for a pivot element?

Determine the number of element comparisons made by all calls to
PARTITION for an instance of QUICKSORT for which every pivot
results in worst case behavior.

Cworst(n) =

3

CSIS 385 Design and Analysis of Algorithms Spring 2025

Average case analysis, assuming the pivot for each PARTITION step
is equally likely to land in each of the n slots.

Cavg(n) =

Strategies for improved pivot selection:

Strategies for making QUICKSORT more efficient:

Quicksort space overhead: Θ()

4

CSIS 385 Design and Analysis of Algorithms Spring 2025

ALGORITHM QUICKSORT(A, lt, rt)
//Input: an array A[0..n− 1]
//Input: lower rt and upper rt bounds of the subarray to sort
//The initial call would be with lt = 0 and rt = n− 1
if lt < rt then

s← Partition(A, lt, rt)
// s is pivot element location
QuickSort(A, lt, s− 1)
QuickSort(A, s+ 1, rt)

ALGORITHM PARTITION(A, lt, rt)
//Input: an array A[0..n− 1]
//Input: lower lt and upper rt bounds of the subarray
// to partition
p← A[lt] // select pivot
i← lt
j ← rt+ 1
repeat

repeat
i← i+ 1

until i = rt or A[i] ≥ p
repeat

j ← j − 1
until j = lt or A[j] ≤ p
swap(A[i], A[j])

until i ≥ j
swap(A[i], A[j]) // undo last swap
swap(A[lt], A[j]) // place pivot
return j

5

