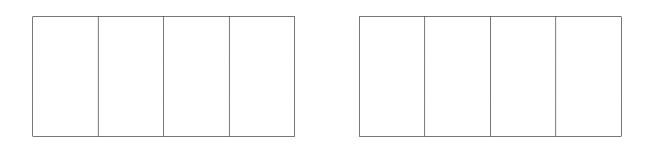


Computer Science 385 Design and Analysis of Algorithms Siena College Spring 2025


Mergesort Practice

Basic Idea

5	3	7	1	2	4	6	8	
---	---	---	---	---	---	---	---	--

5	3	7	1	
---	---	---	---	--

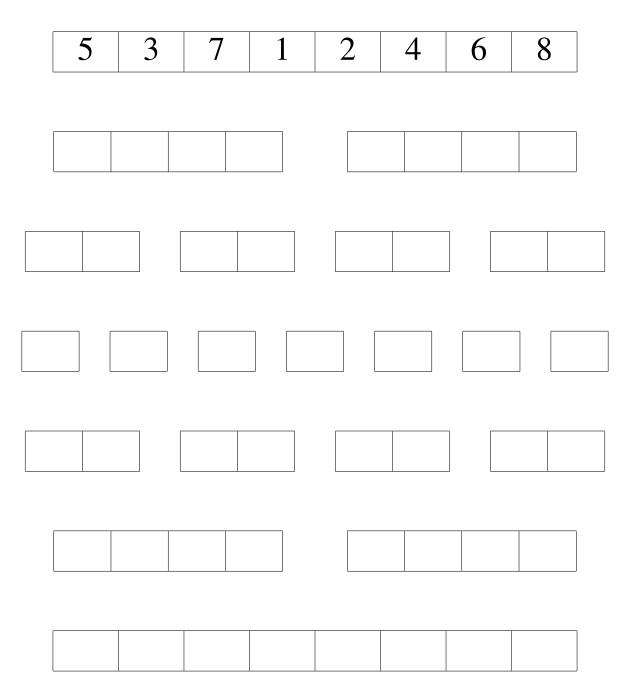
2	4	6	8
---	---	---	---

Consider the MERGE algorithm on the last page of this packet.

Suppose B and C contain the following values, so p = 8 and q = 6.

В	0	1	2	3	4	5		
	11	33	44	66	88	99		
С	0	1	2	3	4	5	6	7
	22	55	77	111	122	133	140	143

Show the contents of array A when the while loop has finished executing.


Show the contents of array A after the *if-else* statement following the while loop has finished executing.

Worst case, how many times is k incremented in the while loop?

Worst case, how many items are copied from C to A and from B to A after the while loop?

Based on your answers to the previous three questions, what is the Big O worst case running time of algorithm MERGE? Express your answer in terms of n, where n = p + q is the size of array A.

Tracing through MERGESORT

How many split steps will it take?

Then we will have _____ merge steps

Each merge step involves sub-arrays totaling in size to _____

At the level with k independent merges, each will merge into arrays of size _____ for a total of _____ operations

This suggests an overall complexity of _____

Analysis (assume $n = 2^k$):

Basic operation:

Recurrence:

$$C(n) =$$

Worst case?

$$C_{worst}(n) =$$

By the master theorem,

$$C_{worst}(n) \in \Theta($$

Mergesort is *not* in place. Space overhead: $\Theta($

```
ALGORITHM MERGE(B, C, A)
//Input: a sorted array B[0..p-1]
//Input: a sorted array C[0..q-1]
//Output: a sorted array A[0..(p+q-1)]
i \leftarrow 0
j \leftarrow 0
k \leftarrow 0
// take smallest item from B and C and put into A
while i < p and j < q do
    if B[i] < C[j] then
         A[k] \leftarrow B[i]
        i \leftarrow i + 1
    else
        A[k] \leftarrow C[j]
        j \leftarrow j + 1
    k \leftarrow k + 1
// if items remain in B, put them in A
while i < p do
    A[k] \leftarrow B[i]
    i \leftarrow i + 1
    k \leftarrow k+1
// if items remain in C, put them in A
while j < q do
    A[k] \leftarrow C[j]
    j \leftarrow j + 1
    k \leftarrow k+1
```

ALGORITHM MERGESORT(A)

//Input: an array A[0..n-1]if n > 1 then

if n > 1 then

copy first half of array A into a temp array Bcopy second half of array A into a temp array CMergeSort(B)MergeSort(C)Merge(B, C, A)