
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Mergesort Practice

Basic Idea

5 3 7 1 2 4 6 8

5 3 7 1 2 4 6 8

CSIS 385 Design and Analysis of Algorithms Spring 2025

Consider the MERGE algorithm on the last page of this packet.

Suppose B and C contain the following values, so p = 8 and q = 6.

Show the contents of array A when the while loop has finished
executing.

Show the contents of array A after the if-else statement following
the while loop has finished executing.

Worst case, how many times is k incremented in the while loop?

Worst case, how many items are copied from C to A and from B to
A after the while loop?

Based on your answers to the previous three questions, what is the
Big O worst case running time of algorithm MERGE? Express your
answer in terms of n, where n = p + q is the size of array A.

2

CSIS 385 Design and Analysis of Algorithms Spring 2025

Tracing through MERGESORT

5 3 7 1 2 4 6 8

3

CSIS 385 Design and Analysis of Algorithms Spring 2025

How many split steps will it take?

Then we will have merge steps

Each merge step involves sub-arrays totaling in size to

At the level with k independent merges, each will merge into arrays
of size for a total of operations

This suggests an overall complexity of

Analysis (assume n = 2k):

Basic operation:

Recurrence:

C(n) =

Worst case?

Cworst(n) =

By the master theorem,

Cworst(n) ∈ Θ()

Mergesort is not in place. Space overhead: Θ()

4

CSIS 385 Design and Analysis of Algorithms Spring 2025

ALGORITHM MERGE(B,C,A)
//Input: a sorted array B[0..p− 1]
//Input: a sorted array C[0..q − 1]
//Output: a sorted array A[0..(p+ q − 1)]
i← 0
j ← 0
k ← 0
// take smallest item from B and C and put into A
while i < p and j < q do

if B[i] < C[j] then
A[k]← B[i]
i← i+ 1

else
A[k]← C[j]
j ← j + 1

k ← k + 1

// if items remain in B, put them in A
while i < p do

A[k]← B[i]
i← i+ 1
k ← k + 1

// if items remain in C, put them in A
while j < q do

A[k]← C[j]
j ← j + 1
k ← k + 1

ALGORITHM MERGESORT(A)
//Input: an array A[0..n− 1]
if n > 1 then

copy first half of array A into a temp array B
copy second half of array A into a temp array C
MergeSort(B)
MergeSort(C)
Merge(B,C,A)

5

