
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Topic Notes: Limitations of Algorithms

We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds
of problems cannot be solved by any algorithm, or which will require a minimum cost, and what
is that minimum cost?

Lower Bounds
We will first look at lower bounds, which estimate the minimum amount of work needed to solve
a given problem.

Once we have established a lower bound, we know that no algorithm can exist without performing
work equivalent to at least that of the lower bound.

Lower bounds may be exact counts or efficiency classes (big Ω). A lower bound is tight if there
exists an algorithm with the same efficiency as the lower bound.

Some lower bound examples will be listed in the class handout.

There are a number of methods that can be used to establish lower bounds:

• trivial lower bounds

• information-theoretic arguments (decision trees)

• adversary arguments

• problem reduction

Trivial Lower Bounds
Trivial lower bounds are based on counting the number of items that must be processed in input
and generated as output to solve a problem.

Some examples are in the class handout.

One must take care in deciding how to count. One may think that to search for an element in a
collection, the lower bound would involve looking at every element. That would lead us to a linear
lower bound. But we know that in the case of a sorted array, we can use a binary search and find
the element in logarithmic time. The key lies with the word “must” in the definition of a trivial
lower bound. There is other information in that case (the ordering) that allows us to avoid ever
considering many of the elements.

CSIS 385 Design and Analysis of Algorithms Spring 2025

Information-Theoretic Arguments
Rather than the number of inputs or outputs to process, an information-theoretic lower bound is
based on the amount of information an algorithm needs to produce to achieve its solution.

A binary search fits here – we are trying to find the location of a given value in a sorted array. Since
we know the array is sorted, we can, with each guess, eliminate half of the possible locations of
the goal, resulting in a lower bound (worst case) of log n steps.

Decision trees are a model of an algorithm’s operation that can help us analyze algorithms such as
search and sort that work by comparisons.

In a decision tree, internal nodes represent comparisons and leaves represent outcomes. The tree
branches based on whether the comparison is true or false.

A simple tree for a search for the minimum among 3 numbers can be found in Figure 11.1 on p.
395 of Levitin.

• The number of leaves may exceed the number of outcomes if the same result can be obtained
via different orders of comparisons.

• The number of leaves must be at least the total number of possible outcomes.

• The operation of an algorithm on a particular input is modeled by a path from the root to a
leaf in the decision tree. The number of comparisons is equal to the number of edges along
that path.

• Worst-case behavior is determined by the height of the algorithm’s decision tree.

It quickly follows that any such tree with a total of l leaves (outcomes) must have h ≥ ⌈log2 l⌉.

Levitin Figures 11.2 (p. 396) and 11.3 (p. 397) show decision trees for selection and insertion sort
of 3 elements.

Our main interest here is to determine a tight lower bound on comparison-based sorting:

• Any comparison-based sorting algorithm can be represented by a decision tree.

• The number of leaves (outcomes) must be ≥ n! to account for all possible permutations of
inputs.

• The height of binary tree with n! leaves ≥ ⌈log2 n!⌉.

• This tells us the number of comparisons in the worst case

Cworst(n) ≥ ⌈log2 n!⌉ ≈ n log2 n

for any comparison-based sorting algorithm.

2

CSIS 385 Design and Analysis of Algorithms Spring 2025

• Since we have an algorithm that operates in Θ(n log2 n) (merge sort), this bound is tight.

Adversary Arguments
Another approach to finding lower bounds is the adversary argument. This method depends on a
“adversary” that makes the algorithm work the hardest by adjusting the input.

For example, when playing a guessing game to determine a number between 1 and n using yes/no
questions (e.g., “is the number less than x?”), the adversary puts the number in the larger of the
two subsets generated by last question. (Yes, it cheats.)

The text also provides an adversary argument to show the lower bound on the number of compar-
isons needed to perform a merge of two sorted n-element lists into a single 2n-element list (as in
merge sort).

Problem Reduction
A key idea in the analysis of algorithms is problem reduction. If we can come up with a way to
convert a problem we wish to solve to an instance of a different problem to which we already have
a solution, this produces a solution to the original problem.

Suppose you wrote a program solving some problem A. A few days later, you find out a program
needs to be written to solve a similar problem B. To avoid writing too much new code, you might
try to come up with a way to solve B using your implementation of A.

So given your input to problem B, you would need to have a procedure to transform this input into
corresponding input to an instance of problem A. Then solve the instance of problem A (which you
already knew how to do). Then you need to transform the output of A back to the corresponding
solution to B.

As a very simple example, suppose you have written a procedure to draw an ellipse.

draw_ellipse(double horiz, double vert, double x, double y)

This procedure likely deals with trigonometry and works at a low level with a graphics library. But
it works, and that’s all we know or care about.

If you are later asked to write a procedure to draw a circle. Hopefully you would quickly realize
that you could make use of your solution to the problem of drawing an ellipse.

draw_circle(double radius, double x, double y) {
draw_ellipse(2*radius, 2*radius, x, y);

}

So we have transformed or reduced the problem of drawing a circle to the problem of drawing an
ellipse. We can say that draw circle is “not more difficult than”, or “can be transformed in
polynomial time” to draw ellipse.

3

CSIS 385 Design and Analysis of Algorithms Spring 2025

The class handout discusses the pairing problem as an example from analysis of algorithms.

There, we reduce the sorting problem to an instance of the pairing problem.

Such a problem reduction can be used to show a lower bound.

• If problem A is at least as hard as problem B, then a lower bound for B is also a lower
bound for A.

• Hence, we wish to find a problem B with a known lower bound that can be reduced to the
problem A.

In our example, problem A is the pairing problem and problem B is the sorting problem. The
sorting problem has a known lower bound of Ω(n log n). Since the sorting problem can be reduced
to an instance of the pairing problem, the pairing problem is at least as hard as the sorting problem,
meaning the pairing problem also has a lower bound of Ω(n log n).

Think about this for a minute and it should make sense: if we know that any solution to a problem
has to have some minimum cost (the lower bound) and we show that some other problem is at least
as hard as that problem, that other problem shares the lower bound of the first.

Important reminder: just because we show that a problem is in some Ω(g(n)), this does not mean
it is also in Θ(g(n)).

As a more interesting example, suppose we wish to find a lower bound for the problem of finding
the minimum spanning tree of a set of points in the plane. This problem, known as the Euclidean
MST problem, is defined as follows: given n points in the plane, construct a tree of minimum total
length whose vertices are the given points.

The problem with the known lower bound we’ll use is the element uniqueness problem (Ω(n log n),
tight).

So our task is to reduce the element uniqueness problem to an instance of the Euclidean MST
problem. We proceed as follows:

• If our input to the element uniqueness problem is a set of numbers x1, x2, · · · , xn, we can
transform these to a set of points in the plane by attaching a y-coordinate of 0 to each:
(x1, 0), (x2, 0), · · · , (xn, 0).

• If we then solve the Euclidean MST problem on this set of input to obtain a spanning tree T .

• From this, we can obtain a solution to the original element uniqueness problem by checking
for a 0-length edge.

So we can deduce a lower bound of Ω(n log n) for the Euclidean MST problem.

Tractable Problems, P and NP

4

CSIS 385 Design and Analysis of Algorithms Spring 2025

A problem is said to be tractable if there exists a polynomial-time (O(p(n)) where p(n) is a poly-
nomial of the input size n) algorithm to solve it.

A problem for which no such algorithm exists is called intractable.

When attempting to determine the tractability of a problem, the answer may be:

• Yes, it is tractable. This is shown by producing a polynomial-time algorithm.

• No, it is not tractable. This is done by proof that no algorithm exists or that any algorithm
must take exponential time. Example: Towers of Hanoi. We have to make all 2n moves.

• The answer is unknown.

Before we continue, we make a distinction between two problem types: optimization problems
and decision problems.

In an optimization problem, we look to find a solution that maximizes or minimizes some objective
function. For a decision problem, we seek the answer to a yes/no question.

Many problems have both decision and optimization versions. For example, the traveling salesman
problem can be stated either way:

• optimization: find a Hamiltonian cycle of minimum length.

• decision: find Hamiltonian cycle of length ≤ m.

Decision problems are more convenient for formal investigation of their complexity and our dis-
cussion that follows will assume decision problems.

P and NP

We define class P as the class of decision problems that are solvable in O(p(n)) time, where p(n)
is a polynomial of problem’s input size n.

Many of the problems we have seen fall into class P , but do all decision problems fall into this
class?

The answer is no. Some problems are undecidable, such as the famous halting problem. The
problem: given a computer program and an input to it, determine whether the program will halt on
that input or continue working indefinitely on it.

We can prove by contradicion that this problem is undecidable.

Suppose that A is an algorithm that solves the halting problem. More formally, for any program P
and input I , A(P, I) produces a 1 if P halts when executed with input I and 0 if it does not.

Now, take a program P and use the program as its own input. We’ll use the algorithm A to construct
another program Q such that Q(P) halts if A(P, P) = 0 (P does not halt on input P) but does not
halt (goes into a loop) if A(P, P) = 1 (P halts on input P).

5

CSIS 385 Design and Analysis of Algorithms Spring 2025

And finally, we apply Q to itself: Q(Q) halts if A(Q,Q) = 0 (program Q does not halt on Q) and
does not halt if A(Q,Q) = 1 (program Q halts on Q).

Given our construction of the program Q, neither of these outcomes is possible, so no such algo-
rithm A can exist.

There is also a set of problems for which it has been shown to take exponential time to obtain a
solution (with a provable lower bound).

But a larger and important set of problems have no known polynomial-time solution, but there is
no proof that no such solution exists.

We have seen some of these problems:

• Hamiltonian circuit

• Traveling salesman

• Knapsack problem

• Partition problem

• Bin packing

• Graph coloring

For some of these, while there is no known polynomial-time solution, we can easily check if a
given candidate solution is valid. This leads us to..

Class NP (nondeterministic polynomial) is the class of decision problems whose proposed so-
lutions can be verified in polynomial time, i.e., are solvable by a nondeterministic polynomial
algorithm.

A nondeterministic polynomial algorithm is an abstract procedure that:

1. generates a random string purported to solve the problem

2. checks whether this solution is correct in polynomial time

By definition, it solves the problem if it is capable of generating and verifying a solution on one of
its tries.

Many decision problems are in NP , including all of those that are in P .

The big open question in theoretical computer science is whether P = NP . What would it mean?

First, one more definition.

A decision problem D is NP-complete if it’s as hard as any problem in NP , i.e.,

• D is in NP , and

6

CSIS 385 Design and Analysis of Algorithms Spring 2025

• every problem in NP is polynomial-time reducible to D

The first requirement isn’t bad – just produce a nondeterministic polynomial algorithm. The sec-
ond, known as the NP-Hard property, is pretty daunting. We’re supposed to show that every
problem in NP is polynomial-time reducible to this problem?

Of course, any NP -complete problems are polynomially reducible to each other, so it suffices to
show that we can reduce any one problem in the set of NP -complete problems to a problem to
show it is NP -complete.

Nonetheless, there are problems known to be NP -complete.

Informally, an NP -complete problem is one for which we have not yet found any O(nc) algo-
rithms, and if we do find an O(nc) algorithm to solve it, we’ll then get O(nc) solutions to all
problems in NP .

Figure 11.6 on p. 406 of Levitin shows the idea graphically.

The first problem shown to be NP -complete was the CNF-satisfiability problem: Is a boolean
expression in its conjunctive normal form (CNF) satisfiable, i.e., are there values of its variables
that makes it true?

For our purposes, we will just note that this problem is in NP by noting this nondeterministic
algorithm:

1. Guess truth assignment

2. Substitute the values into the CNF formula to see if it evaluates to true

A check can be done in linear time.

The deterministic solution requires 2n evaluations.

For example, consider the expression:

(A|¬B|¬C)&(A|B)&(¬B|¬D|E)&(¬D|¬E)

We would have to check each of the 25 = 32 combinations of boolean values of A, B, C, D, and
E.

Other problems can be shown to be NP -complete by producing a reduction of CNF-Sat to that
problem. That is, if a problem can be used to solve CNF-Sat, the problem is NP -complete.

Some Famous NP -Complete Problems

• The Independent Set Problem.

Input: An undirected graph G and a value k.

7

CSIS 385 Design and Analysis of Algorithms Spring 2025

Output: Yes if G has an independent set of size at least k. An independent set is a subset of
the vertices such that no pair of vertices has an edge between them.

An algorithm to solve this: Enumerate every possible subset and check if it forms an inde-
pendent set. Keep track of the largest such subset.

In the worst case, 2|V | subsets are searched.

This is the best known solution, but even for a problem with 60 vertices and a computer that
can do 1 billion subsets per second, it would take 32 years to solve the problem!

What happens if we move up to 61 vertices?

• The Hamiltonian Cycle Problem.

Input: An undirected, weighted graph G = (V,E).

Output: Yes if G has a Hamiltonian cycle (a cycle that visits every vertex exactly once), no
otherwise.

An algorithm to solve this: Enumerate every possible cycle of vertices and check if the edges
that connect it exist.

In the worst case, we need to check |V |! paths.

This is the best known solution, but again for a relatively small problem – 20 vertices, and a
computer that could do 1 billion permutations per second, again we’re looking at 32 years!

What happens if we move up to 21 vertices?

So, Does P = NP

Sure, if P = 0 or N = 1. But that’s not helpful.

Most theoretical computer scientists believe that no polynomial time solutions exist for the class
of NP -complete problems.

There are hundreds of NP -complete problems known, and in the nearly 50 years since the problem
was posed in 1971, no one has found a polynomial time solution to any of them, nor has anyone
proven than no such algorithms can exist.

Yet, it remains a central open question in computing.

Dealing with NP -Hard Problems
Realistically, NP -hard problems are “solved” by approximations or stochastic approaches. See
Chapter 12!

8

