
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Topic Notes: Introduction and Overview

Welcome to Design and Analysis of Algorithms!

What is an Algorithm?
We explore the idea of an algoritm and important properties in class with a separate handout.

Why Study Algorithms?
The study of algorithms has both theoretical and practical importance.

Computer science is about problem solving and these problems are solved by applying algorithmic
solutions.

Theory gives us tools to understand the efficiency and correctness of these solutions.

Practically, a study of algorithms provides an arsenal of techniques and approaches to apply to the
problems you will encounter. And you will gain experience designing and analyzing algorithms
for cases when known algorithms do not quite apply.

We will consider both the design and analysis of algorithms, and will implement and execute some
of the algorithms we study.

We said earlier that both time and space efficiency of algorithms are important, but it is also impor-
tant to know if there are other possible algorithms that might be better. We would like to establish
theoretical lower bounds on the time and space needed by any algorithm to solve a problem, and
to be able to prove that a given algorithm is optimal. We would also like to be able to prove that
some things are impossible!

Some Course Topics
Some of the problems whose algorithmic solutions we will consider include:

• Searching

• Shortest paths in a graph

• Minimum spanning tree

• Primality testing

• Traveling salesman problem



CSIS 385 Design and Analysis of Algorithms Spring 2025

• Knapsack problem

• Chess

• Towers of Hanoi

• Sorting

• Program termination

Some of the approaches we’ll consider:

• Brute force

• Divide and conquer

• Decrease and conquer

• Transform and conquer

• Greedy approach

• Dynamic programming

• Backtracking and Branch and bound

• Space and time tradeoffs

The study of algorithms often extends to the study of advanced data structures. Most should be
familiar; others might be new to you:

• lists (arrays, linked, strings)

• stacks/queues

• priority queues

• graph structures

• tree structures

• sets and dictionaries

Finally, the course will often require you to write formal analysis including some proofs.

Pseudocode
We will spend a lot of time looking at algorithms expressed as pseudocode.

2



CSIS 385 Design and Analysis of Algorithms Spring 2025

Unlike a real programming language, there is no formal definition or standard “dialect” of “pseu-
docode”. In fact, any given textbook is likely to have its own style for pseudocode.

Our text has a specific pseudocode style. I will aim to approximate the book’s style, but sometimes
my own style might drift to look more like Java or C code. Please try to do the same when you
write pseudocode. It doesn’t have to match the text exactly, but should be close.

The book’s dialect:

• omits variable declarations

• indentation shows scope of for, if, and while statements (no curly braces!)

• arrow← used for assignment

• single = for equality comparison

• // used for comments

• no semicolons!

A big advantage of using pseudocode is that we do not need to define types of all variables or
specify complex structures.

3


