
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Topic Notes: Maps and Hashing

Hashing
A map or dictionary is a structure used for looking up items via key-value associations.

There are many possible implementations of dictionary/map data structures. If we think abstractly
about a few variants, we can consider their time complexity on the most common operations, and
space complexity. In the table below, n denotes the actual number of elements in the map, and N
denote the maximum number of elements it could contain (where there is such a restriction).

Structure Search Insert Delete Space
Linked List O(n) O(1) O(n) O(n)

Sorted Array O(log n) O(n) O(n) O(N)
Balanced BST O(log n) O(log n) O(log n) O(n)

Array[KeyRange] of EltType O(1) O(1) O(1) KeyRange

That last line is very interesting – it represents the payoff for a big space-time tradeoff. If we know
the range of possible keys (suppose they’re all integers between 0 and KeyRange-1) we can use
the key as the index directly into an array. And have constant time search, insert, and delete! But
that’s potentially a very large array.

Hashing
The map implementation of an array with keys as the subscripts and values as array elements
makes a lot of sense. For example, we could store information about members of a team whose
uniform numbers are all within a given range by storing each player’s information in the array
location indexed by their uniform number. If some uniform numbers are unused, there will be
some empty slots, but it gives us constant time access to any player’s information as long as we
know the uniform number.

However, there are some important restrictions to overcome for us to be able to use this represen-
tation.

This implementation assumes that the data has a key which is of a type that can be used as an
array subscript (some enumerated type in Pascal, non-negative integers in C/C++/Java), which is
not always the case. What if we’re trying to store strings or doubles or something more complex?

Moreover, the size requirements for this implementation could be prohibitive. Suppose we wanted
to store 2000 student records indexed by social security number or a college ID number. We would
need an array with 1 billion elements, all but 2000 of which would be empty!



CSIS 385 Design and Analysis of Algorithms Spring 2025

In cases like this, where most of the entries will be empty, we would like to use a smaller array, but
come up with a good way to map our elements into the array entries.

Suppose we have a lot of data elements of type E and a set of indices I in which we can store data
elements. We would like to obtain a function H: E→ I , which has the properties:

1. H(e) can be computed quickly

2. If e1 ̸= e2 then H(e1) ̸= H(e2). (i.e., H is a one-to-one function)

This is called a perfect hashing function. Unfortunately, they are difficult to find unless you know
all possible entries to the table in advance. This is rarely the case.

Instead we use something that behaves well, but not necessarily perfectly.

The goal is to scatter elements through the array randomly so that they won’t attempt to be stored
in the same location, or “bump into” each other.

So we will define a hashing function H: Keys → Addresses (or array indices), and we will
call H(e.key) the home address of e.

Assuming no two distinct elements have the same home address (i.e., wind up mapping to the same
array location), we have add, search and remove them in Θ(1) time.

Note, however, that we cannot efficiently visit our elements in order, as is possible with some of
the other maps structures.

Since in general, a hashing function is not guaranteed to be one-to-one, it is possible that multiple
distinct elements map to the same home address.

This suggests two problems to consider:

1. How to choose a good hashing function to minimize this occurrence?

2. How to resolve the situation where two different elements are mapped to same home address?

Selecting Hashing Functions
The following quote should be memorized and recited by anyone trying to design a hashing func-
tion:

“A given hash function must always be tried on real data in order to find out whether it is effective
or not.”

Data which contains unexpected and unfortunate regularities can completely destroy the usefulness
of any hashing function!

We will start by considering hashing functions for integer-valued keys.

2



CSIS 385 Design and Analysis of Algorithms Spring 2025

Digit selection As the name suggests, this involves choosing digits from certain positions of key
(e.g., last 3 digits of a Social Security Number).

To make sense, the size of the table would match the number of digits we select. So if we
select 3 digits, the table should have size 1000.

Unfortunately it is easy to make a very unfortunate choice. We would need careful analysis
of the expected keys to determine which digits will work best. Patterns in the keys can cause
problems. We want to make sure that the expected keys are at least capable of generating all
possible home addresses.

For example, the first digits of SSNs often reflect the region of the country in which they
were assigned, and hence usually would work poorly as a hashing function.

Even worse, what about the first four digits of a Siena ID number? The first three digits of a
phone number?

Division Here, we let H(key) = key mod TableSize

This is very efficient and often gives good results if the TableSize is chosen properly.

If it is chosen poorly then you can get very poor results. Consider the case where TableSize
= 28 = 256 and the keys are computed from ASCII equivalent of two letter pairs, i.e.
Key(xy) = 28 · ASCII(x) + ASCII(y), then all pairs ending with the same letter get
mapped to same address. Similar problems arise with any power of 2.

It is usually safest to choose the TableSize to be a prime number in the range of your
desired table size. The default size in the structure package’s hash table, for example, is 997.

Mid-Square Here, the approach is to square the key and then select a subset of the bits from the
result. Often, bits from the middle part of the square are taken. The mixing provided by the
multiplication ensures that all digits are used in the computation of the hash code.

Example: Let the keys range between 1 and 32000 and let the TableSize be 2048 = 211.

Square the key and select 11 bits from the middle of the result. Note that such bit manipula-
tions can be done very efficiently using shifting and bitwise and operations.

H(Key) = (key >> 10) & 0x07FF;

Will pull out the bits:

Key = 123456789abcdefghijklmnopqrstuvw
Key >> 10 = 0000000000123456789abcdefghijklm
& 0x07FF = 000000000000000000000cdefghijklm

Using r bits produces a table of size 2r.

3



CSIS 385 Design and Analysis of Algorithms Spring 2025

Folding Here, we break the key into chunks of digits (sometimes reversing alternating chunks)
and add them up.

This is often used if the key is too big. Suppose the keys are Social Security numbers, which
are 9 digits numbers. We can break it up into three pieces, perhaps the 1st digit, the next 4,
and then the last 4. Then add them together.

This technique is often used in conjunction with other methods – one might do a folding
step, followed by division.

What if the key is a String?

We can use a formula like - Key(xy) = 28 · (int)x + (int)y to convert from alphabetic keys to
ASCII equivalents. (Use 216 for Unicode.) This is often used in combination with folding (for the
rest of the string) and division.

A very simple hash function for strings is to add together the ordinal equivalent of all letters and
take the remainder mod TableSize.

hash = 0;
for (int charNo = 0; charNo < word.length(); charNo++)

hash = hash + (int)(word.charAt(CharNo));
hash = hash % tableSize; /* gives 0 <= hash < tableSize */

However, this has a potential problem – words with the same letters get mapped to same places:

miles, slime, smile

This is not going to be a very good hash function, but it’s at least simple. It can be improved
significantly by taking the letters in pairs before division.

We can see how the designers of Java decided to generate hashing functions for String objects.
As you may know, all Java objects come equipped with a hashCode method (just like they all
have a toString and a handful of other methods). The hashCode for Java Strings is defined
as specified in its Javadoc:

s[0]*31ˆ(n-1) + s[1]*31ˆ(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string,
and ˆ here indicates exponentiation. (The hash value of the empty string is zero.)

https://github.com/SienaCSISAlgorithms/HashCodes-example

Handling Collisions
Recall that the home address of a key is the location that the hashing function returns for that key.

4



CSIS 385 Design and Analysis of Algorithms Spring 2025

A hash collision occurs when two different keys have the same home location.

There are two main options for getting out of trouble:

1. With closed hashing, a technique confusingly called open addressing is used: if the desired
slot is full, do something to find an open slot. This must be done in such a way that one can
find the element again quickly!

2. For open hashing. a technique called external chaining or separate chaining is used: make
each slot capable of holding multiple items and store all objects that with the same home
address in their desired slot.

For our discussion, we will assume our hash table consists of an array of TableSize entries of
the appropriate type:

T [] table = new T[TableSize];

Closed Hashing
Here, we find the home address of the key (most commonly using the hashing function mod
TableSize). If the slot at the home address happens to be occupied, we keep trying new slots
until an empty slot is located.

There will be three types of entries in the table:

• an empty slot, that has never been occupied by an element, often represented by null

• deleted entries - marked by inserting a special entry indicating “empty after removal” (the
need for this will soon become obvious), and

• normal entries which contain a reference to an object in the hash table.

This approach requires a rehashing. There are many ways to do this – we will consider a few.

First, linear probing. We simply look for the next available slot in the array beyond the home
address. If we get to the end, we wrap around to the beginning:

Rehash(i) = (i + 1) % TableSize.

This is about as simple as possible. Successive rehashing will eventually try every slot in the table
for an empty slot.

For example, consider a simple hash table of strings, where TableSize = 26, and we choose
a (poor) hash function:

5



CSIS 385 Design and Analysis of Algorithms Spring 2025

H(key) = the alphabetic position (zero-based) of the first character in the string.

Strings to be input are GA, D, A, G, A2, A1, A3, A4, Z, ZA, E

Here’s what happens with linear rehashing:

0 1 2 3 4 5 6 7 8 9 10 ... 25
A A2 A1 D A3 A4 GA G ZA E .. ... Z

In this example, we see the potential problem with an closed hashing approach in the presence of
collisions: clustering.

Primary clustering occurs when more than one key has the same home address. If the same re-
hashing scheme is used for all keys with the same home address then any new key will collide with
all earlier keys with the same home address when the rehashing scheme is employed.

In the example, this happened with A, A2, A1, A3, and A4.

Secondary clustering occurs when a key has a home address which is occupied by an element
which originally got hashed to a different home address, but in rehashing got moved to the address
which is the same as the home address of the new element.

In the example, this happened with E.

When we search for A3, we need to look in 0,1,2,3,4.

What if we search for AB? When do we know we will not find it? We have to continue our search
to the first empty slot! This is not until position 10!

Now let’s delete A2 and then search for A1. If we just put a null in slot 1, we would not find A1
before encountering the null in slot 1.

So we must mark elements where deletions have occurred with a special value (not just make them
empty). These slots can be reused on a new insertion, but we cannot stop a search when we see a
slot marked as deleted. This can be pretty complicated.

Minor variants of linear rehashing would include adding any number k (which should be relatively
prime to TableSize), rather than adding 1.

If the number k is divisible by any factor of TableSize (i.e., k is not relatively prime to
TableSize), then not all entries of the table will be explored when rehashing. For instance,
if TableSize = 100 and k = 50, the linear rehashing function will only explore two slots no
matter how many times it is applied to a starting location.

Often the use of k = 1 works as well as any other choice.

Next, we consider quadratic rehashing.

Here, we try slot (home + j2) % TableSize on the jth rehash.

This variant can help with secondary clustering but not primary clustering.

It can also result in instances where in rehashing you don’t try all possible slots in table.

6



CSIS 385 Design and Analysis of Algorithms Spring 2025

For example, suppose the TableSize is 5, with slots 0 to 4. If the home address of an element
is 1, then successive rehashings result in 2, 0, 0, 2, 1, 2, 0, 0, ... The slots 3 and 4 will never be
examined to see if they have room. This is clearly a disadvantage.

Our last option for rehashing is called double hashing.

Rather than computing a uniform jump size for successive rehashes, we make it depend on the key
by using a different hashing function to calculate the rehash.

For example, we might compute

delta(Key) = Key % (TableSize -2) + 1

and add this delta for successive rehash attempts.

If the TableSize is chosen well, this should alleviate both primary and secondary clustering.

For example, suppose the TableSize is 5, and H(n) = n % 5. We calculate delta as above.
So while H(1) = H(6) = H(11) = 1, the jump sizes for the rehash differ since delta(1)
= 2, delta(6) = 1, and delta(11) = 3.

Open Hashing/External Chaining
We can eliminate some of our troubles entirely by allowing each slot in the hash table hold as many
items as necessary.

The easiest way to do this is to let each slot be the head of a linked list of elements.

The simplest way to represent this is to allocate a table as an array of references, with each non-
null entry referring to a linked list of elements which got mapped to that slot.

We can organize these lists as ordered, singly or doubly linked, circular, etc.

We can even let them be binary search trees if we want.

Of course with good hashing functions, the size of lists should be short enough so that there is no
need for fancy representations (though one may wish to hold them as ordered lists).

There are some advantages to this over closed hashing:

1. The “deletion problem” doesn’t arise.

2. The number of elements stored in the table can be larger than the table size.

3. It avoids all problems of secondary clustering (though primary clustering can still be a prob-
lem – resulting in long lists in some buckets).

Hashing Analysis

7



CSIS 385 Design and Analysis of Algorithms Spring 2025

We can measure the performance of various hashing schemes with respect to the load factor of the
table.

The load factor, α, of a table is defined as the ratio of the number of elements stored in the table to
the size of the table.

α = 1, at least for closed hashing, means the table is full, α = 0 means it is empty.

Larger values of α lead to more collisions.

(Note that with external chaining, it is possible to have α > 1).

The table below (from Bailey’s Java Structures) summarizes the performance of our collision res-
olution techniques in searching for an element.

Strategy Unsuccessful Successful

Linear probing 1
2

(
1 + 1

(1−α)2

)
1
2

(
1 + 1

(1−α)

)
Double hashing 1

1−α
1
α
ln 1

(1−α)

External chaining α + e−α 1 + 1
2
α

The value in each slot represents the average number of compares necessary for a search. The
first column represents the number of compares if the search is ultimately unsuccessful, while the
second represents the case when the item is found.

The main point to note is that the time for linear rehashing goes up dramatically as α approaches
1.

Double hashing is similar, but not so bad, whereas external chaining does not increase very rapidly
at all (linearly).

In particular, if α = .9, we get:

Strategy Unsuccessful Successful
Linear probing 55 11

2

Double hashing 10 ∼ 4
External chaining 3 1.45

The differences become greater with heavier loading.

The space requirements (in words of memory) are roughly the same for both techniques. If we
have n items stored in a table allocated with TableSize entries:

• closed hashing (open addressing): TableSize + n· objectsize

• open hashing (external chaining): TableSize + n· (objectsize + 1)

With open hashing/external chaining we can get away with a smaller TableSize, since it re-
sponds better to the resulting higher load factor.

A general rule of thumb might be to use closed hashing when we have a small number of elements
and expect a low load factor. We have have a larger number of elements, open hashing with external
chaining can be more appropriate.

8



CSIS 385 Design and Analysis of Algorithms Spring 2025

Hashtable Implementations
Hashing is a central enough idea that all Objects in Java come equipped with a method hashCode
that will compute a hash function. Like equals, this is required by Object. We can override it
if we know how we want to have our specific types of objects behave.

Java has long included hash tables in java.util.Hashtable, and more recently in java.util.HashMap,
which is an extention of the Map interface.

It uses external chaining, with the buckets implemented as a linear structure. It allows two param-
eters to be set through arguments to the constructor:

• initialCapacity - how big is the array of buckets

• loadFactor - how full can the table get before it automatically grows

Suppose an insertion causes the hash table to exceed its load factor. What does the resize operation
entail? Every item in the hash table must be rehashed! If only a small number of buckets get used,
this could be a problem. We could be resizing when most buckets are still empty. Moreover, the
resize and rehash may or may not help. In fact, shrinking the table might be just as effective as
growing it in some circumstances.

There are other variations on the hash map in the Java Collections framework.

9


