
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Dynamic Programming Practice

Simple Example: Fibonacci Numbers
The Fibonacci sequence is defined by:

F (n) = F (n− 1) + F (n− 2)

F (0) = 0

F (1) = 1

Direct computation of F (7):

If we save the answers to solved subproblems in a table:



CSIS 385 Design and Analysis of Algorithms Spring 2025

Fibonacci bottom up approach:

Fibonacci with less memory needed:

2



CSIS 385 Design and Analysis of Algorithms Spring 2025

The Change Maker Problem

How do you make change adding up to 37 cents in the U.S. coin denominations?

What if the coins are worth 10, 7, 2, and 1, and you wanted to make 14 cents?

Greedy:

Fewest coins:

ALGORITHM CHANGEMAKER(D, amt)
//Input: D[0..d− 1] array of coin denominations
//Input: amt desired coin total value
//Output: the minimum number of coins in D to sum to amt
if amt = 0 then

return 0
min←∞
for i← 0..d− 1 do

if amt ≥ D[i] then
x← 1 + ChangeMaker(D, amt−D[i])
if x < min then

min← x
return min

3



CSIS 385 Design and Analysis of Algorithms Spring 2025

Draw the exhaustive search tree for D = [1, 3, 5], amt = 8.

How many recursive calls are made?

How many times does it compute each subprogram?

4



CSIS 385 Design and Analysis of Algorithms Spring 2025

Augmented version to remember the answers to recursive subproblems: a memory
function

ALGORITHM CHANGEMAKER(D, amt, sols)
//Input: D[0..d− 1] array of coin denominations
//Input: amt desired coin total value
//Input: sols[0..maxAmt] saved solutions, initialized to all -1
//Output: the minimum number of coins in D to sum to amt
if amt = 0 then

return 0
// did we already compute this amount’s result?
if sols[amt] ≥ 0 then

return sols[amt]

// we need to compute this amount’s result
min←∞
for i← 0..d− 1 do

if amt ≥ D[i] then
x← 1 + ChangeMaker(D, amt−D[i])
if x < min then

min← x
// save this result before returning in case we need it again
sols[amt]← min
return min

Smaller recursive call tree:

How many non-trivial calls are needed here? What is the largest number for a
given value of amt?

5



CSIS 385 Design and Analysis of Algorithms Spring 2025

Binomial Coefficients

Binomial coefficients are the values C(n, k) in the binomial formula:

(a+ b)n = C(n, 0)an + · · ·+ C(n, k)an−kbk + · · ·+ C(0, n)bn.

Computing for the first few values of n:

Recall Pascal’s Triangle:

6



CSIS 385 Design and Analysis of Algorithms Spring 2025

A dynamic programming algorithm to compute C(n, k):
ALGORITHM BINOMIAL(n, k)

// Input: n, the power for (a+ b)n

// Input: k, the exponent of b in the desired term in the expanded polynomial
// C[0..n, 0..k] is a dynamic programming array
// Output: the coefficient of the an−kbk term in the expanded polynomial
for i← 0..n do

for j ← 0..min(i, k) do
if j = 0 or j = i then

C[i, j]← 1
else

C[i, j]← C[i− 1, j − i] + C[i− 1, j]

return C[i, k]

Basic operation:

Analysis:

7



CSIS 385 Design and Analysis of Algorithms Spring 2025

The Knapsack Problem

Given n items with weights w1, w2, ..., wn and values v1, v2, ..., vn, what is the most
vaulable subset of items that can fit into a knapsack that has a total weight capacity
of W .

What was the brute force approach we considered earlier? What is its Big-Θ
efficiency?

Example instance, W = 5, weights and values as in the leftmost column of the
table below.

Let’s build a table V , where V [i, j] is the optimal answer when we select from
among only the first i items and limit to a capacity of j. Note that V [4, 5] would
then contain our solution.

capacity j

i 0 1 2 3 4 5
0

w1 = 2, v1 = 12 1
w2 = 1, v2 = 10 2
w3 = 3, v3 = 20 3
w4 = 2, v4 = 15 4

Recurrence:

8



CSIS 385 Design and Analysis of Algorithms Spring 2025

How about a top-down approach, where we use a memory function to compute
only those subproblems we actually need?

capacity j

i 0 1 2 3 4 5
0

w1 = 2, v1 = 12 1
w2 = 1, v2 = 10 2
w3 = 3, v3 = 20 3
w4 = 2, v4 = 15 4

Time efficiency: Space efficiency:

9


