

Computer Science 385 Design and Analysis of Algorithms Siena College Spring 2025

Decrease and Conquer Practice

```
ALGORITHM INSERTIONSORT(A)

//Input: an array A[0..n-1]

for i \leftarrow 0..n-1 do

v \leftarrow A[i]

j \leftarrow i-1

while j \ge 0 and A[j] < v do

A[j+1] \leftarrow A[j]

j \leftarrow j-1

A[j+1] \leftarrow v
```

In-place?

Stable?

Basic operations:

Best/average/worst cases?

Is this best case important? In what use cases is this more likely?

Number of comparisions, worst case: $C_{worst}(n) =$

Number of comparisions, best case:

 $C_{best}(n)$ =

Number of comparisons, average case (on random ordered data):

 $C_{avg}(n) \approx$

```
ALGORITHM FACTORIAL(n)

if n = 0 then

return 1

else

return n \cdot FACTORIAL(n - 1)
```

The size is n (the parameter passed in to get things started) and the basic operation is the multiplication in the else part.

There is no difference among the best, average, and worst cases.

Recurrence:

$$M(n) =$$

Base case/initial condition:

M() =

Back substitution steps:

Pattern:

M(n) =

Application of base case, and result:

$$M(n) =$$

Towers of Hanoi

Recall that solving an instance of this problem for n disks involves solving an instance of the problem of size n - 1, moving a single disk, then again solving an instance of the problem of size n - 1. We denote the number of moves to solve the problem for n disks as M(n).

Recurrence with base case:

M(n) = M() =

Backward substitution:

$$M(n) =$$

Pattern:

M(n) =

Application of base case and result: M(n) =

```
ALGORITHM BINDIGITS(n)

if n = 1 then

return 1

else

return BINDIGITS(\lfloor \frac{n}{2} \rfloor) + 1
```

In this case, we will count the number of additions, A(n).

Recurrence with base case:

$$\begin{split} A(n) &= \\ A(\) = \\ \text{Convert to a power of 2 (smoothness rule: let } n = 2^k): \\ A(2^k) &= \\ A(2\) = \\ \text{Backward substitution:} \\ A(2^k) &= \end{split}$$

Let i = -, to sub into this pattern: $A(2^k) = -$

Application of base case and result, convert back to n: $A(2^k) =$ A(n) =

Another example of a common pattern

$$C(n) = 2C(n/2) + 2$$

when n > 0, and a base case of C(1) = 0.

```
ALGORITHM INSERTIONSORT(A)
   //Input: an array A[0..n-1]
   recInsertionSort(A, n-1)
ALGORITHM RECINSERTIONSORT(A, max)
   //Input: an array A[0..n-1]
   //Input: upper index limit to sort max
   // Base case: a 1-element array
   if max = 0 then
       return
   // Recursive case: sort first max - 1
   RecInsertionSort(A, max - 1)
   // now insert max'th in correct location
   v \leftarrow A[max]
   j \leftarrow max - 1
   while j \ge 0 and A[j] > v do
       A[j+1] \leftarrow A[j]
      j \leftarrow j - 1
   A[i+1] \leftarrow v
```

Worst case recursive analysis for the number of comparisons: