
Computer Science 385
Design and Analysis of Algorithms
Siena College
Spring 2025

Topic Notes: Brute-Force Algorithms

Our first category of algorithms are called brute-force algorithms.

Levitin defines brute force as a straightforward approach, usually based directly on the problem
statement and definitions of the concepts involved.

We have already seen a few examples:

• consecutive integer checking approach for finding a GCD

• matrix-matrix multiplication

Another is the computation of an by multiplying by a n times.

Brute-force algorithms are not usually clever or especially efficient, but they are worth considering
for several reasons:

• The approach applies to a wide variety of problems.

• Some brute-force algorithms are quite good in practice.

• It may be more trouble than it’s worth to design and implement a more clever or efficient
algorithm over using a straightforward brute-force approach.

Brute-Force Sorting
One problem we will return to over and over is that of sorting. We will first consider some brute-
force approaches.

We will usually look at sorting arrays of integer values, but the algorithms can be used for other
comparable data types.

Bubble Sort
Right at the start of our class, we looked at this very intuitive sort. We just go through our array,
looking at pairs of adjacent values, and swapping them if they are out of order.

It takes n− 1 “bubble-ups”, each of which can stop sooner than the last, since we know we bubble
up one more value to its correct position in each iteration. Hence the name bubble sort.

The version we came up with earlier looked like this:



CSIS 385 Design and Analysis of Algorithms Spring 2025

ALGORITHM BUBBLESORT(A)
//Input: an array A[0..n− 1]
for i← 0..n− 2 do

for j ← 0..n− 2− i do
if A[j + 1] < A[j] then

swap A[j + 1] and A[j]

We will analyze this in class to see (as expected) that it has Θ(n2) comparisons. There is also a
swap, potentially, after each comparison, giving a worse case behavior of Θ(n2) swaps.

Selection Sort
A simple improvement on the bubble sort is based on the observation that one pass of the bubble
sort gets us closer to the answer by moving the largest unsorted element into its final position.
Other elements are moved “closer” to their final position, but all we can really say for sure after a
single pass is that we have positioned one more element.

So why bother with all of those intermediate swaps? We can just search through the unsorted part
of the array, remembering the index of (and hence, the value of) the largest element we’ve seen so
far, and when we get to the end, we swap the element in the last position with the largest element
we found. This is the selection sort.

ALGORITHM SELECTIONSORT(A)
//Input: an array A[0..n− 1]
for i← 0..n− 2 do

min← i
for j ← i+ 1..n− 1 do

if A[j] < A[min] then
min← j

swap A[i] and A[min]

We will complete the analysis in class for both the number of comparisons and the number of
swaps.

Here, we do the same number of comparisons, but at most n− 1 ∈ Θ(n) swaps.

Sequential Search
This topic is covered in its entirety on the class handout.

Brute-Force String Match
The string matching problem involves searching for a pattern (substring) in a string of text.

The basic procedure:

2



CSIS 385 Design and Analysis of Algorithms Spring 2025

1. Align the pattern at beginning of the text

2. Moving from left to right, compare each character of the pattern to the corresponding char-
acter in the text until

• all characters are found to match (successful search); or

• a mismatch is detected

3. While pattern is not found and the text is not yet exhausted, realign the pattern one position
to the right and repeat Step 2

The result is either the index in the text of the first occurrence of the pattern, or indices of all
occurrences. We will look only for the first.

Written in pseudocode, our brute-force string match:
ALGORITHM BRUTEFORCESTRINGMATCH(T , P )

//Input: a text string T [0..n− 1]
//Input: a pattern string P [0..m− 1]
for i← 0..n−m do

j ← 0
while j < m and P [j] = T [i+ j] do

j ← j + 1

if j = m then
return i

return −1

Analysis will be done in class.

We will consider improvements for string matching later in the semester.

In class exercise: Exercise 3.1.4, p. 102

3


