Computer Science 385

Design and Analysis of Algorithms
SIENAcollege Siena College
Computer Science Sp”ng 2025

Brute Force Practice
ALGORITHM BUBBLESORT(A)
//Tnput: an array A[0..n — 1]
for: < 0.n—2do
for j < 0.n —2—ido
if A[j + 1] < A[j] then
swap A[j + 1] and A[j]

Size Metric:

Basic operations:

Best/average/worst cases”?

Number of comparisions/worst case number of swaps:
C(n) =

CSIS 385 Design and Analysis of Algorithms

ALGORITHM SELECTIONSORT(A)
//Input: an array A[0..n — 1]
fori < 0.n—2do
min <1
forj<—i+1.n—1do
if A[j] < A[min] then
min < j
swap Ali] and A[min)]

Number of comparisons:

C(n) =

Number of swaps:

S(n) =

Spring 2025

CSIS 385 Design and Analysis of Algorithms Spring 2025

The brute-force sequential search algorithm searches for a key element £ in an array of elements
by starting at the beginning of the array and scanning through sequentially element by element
until it finds &, or it reaches the end of the array without finding it. Below is pseudocode for
sequential search with two parts missing. Study the code and then fill in the boxes with the missing
pseudocode.

ALGORITHM SEQUENTIALSEARCH(A, k)
//Input: an array A[0..n — 1]
//nput: a key element £
//Output: The index of the first occurrence of k in A
10

while 7 < n and do
1 1+1

if i < n then
return ?

else

return

For an n-element input array, exactly how many key comparisons does the algorithm make in the
worst case? (A key comparison is any comparison made between the key k£ and an element of the
array. The number of key comparisons often determines the asymptotic running time of searching
algorithms, which is why we count them.)

The best-case efficiency of an algorithm is not nearly as important as the worst-case efficiency. But
it is not completely useless either. For example, some sorting algorithms perform best on nearly
sorted data, which is a common situation in practice. For an n element array, exactly how many
key comparisons does sequential search make in the best case?

CSIS 385 Design and Analysis of Algorithms Spring 2025

A simple trick is often used in implementing sequential search: if the key k is added to the end of
the array (assume there is space for it), then the search will find the key there (for an unsuccessful
search), if not sooner (for a successful search). The advantage of this is that we can eliminate the
check ¢ < n in each iteration of the while loop. Write pseudocode for this version of sequential
search below.

ALGORITHM SEQUENTIALSEARCH(A, k)
//Tnput: an array A[0..n — 1] and extra slot A[n] to store k
//nput: a key element £
//Output: The index of the first occurrence of k in A

CSIS 385 Design and Analysis of Algorithms

ALGORITHM BRUTEFORCESTRINGMATCH(T', P)
//Input: a text string 7°[0..n — 1]
//Input: a pattern string P[0..m — 1]
fori <+ 0.n —mdo
70
while j < m and P[j]| = T[i + j] do
j—J+1
if 7 = m then
return ;¢
return —1

Size metrics:
Basic operation:

Best/average/worst cases:

Spring 2025

CSIS 385 Design and Analysis of Algorithms Spring 2025

Levitin Exercise 3.1.4, p. 102

